

Crisp County Power Commission 202 S. 7th Street Cordele, Georgia 31015

2021 SEMI-ANNUAL GROUNDWATER MONITORING REPORT

CRISP COUNTY POWER COMMISSION PLANT CRISP ASH POND Warwick, Georgia

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

July 2021

CERTIFICATION BY QUALIFIED GROUNDWATER SCIENTIST

I certify that this Annual Groundwater Monitoring Report meets the requirements of Section 40 C.F.R. §257 of the Federal Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule (40 C.F.R. §257) and the Georgia EPD Solid Waste Management Rule for Coal Combustion Residuals (391-3-4-.10). The Annual Groundwater Monitoring Report includes statistical methods and narrative description appropriate for evaluating the groundwater monitoring data for the CCR management area.

JIMMY WHITMER

Printed Name of Qualified Groundwater Scientist

PG001302

Registration No.

Georgia

Registration State

N WHIT

7/30/2021

Stamp/Signature/Date

TABLE OF CONTENTS

CER'	TIFICATION BY QUALIFIED PROFESSIONAL ENGINEER	i
EXE	CUTIVE SUMMARY	1
1.0	INTRODUCTION	2
	1.1 Overview	
	1.2 Site History	3
	1.3 Geologic and Hydrogeologic Setting	4
	1.4 Groundwater Monitoring Well Network	5
2.0	GROUNDWATER SAMPLING AND LABORATORY ANALYSIS	
	RESULTS	
	2.1 Groundwater Sampling and Laboratory Analysis	
	2.2 Groundwater Monitoring Results	7
3.0	ASSESSMENT MONITORING STATISTICAL DATA ANALYSIS	0
	PROCEDURES	
	3.1 GWPS for Appendix IV Constituents	
	3.2 Evaluation of SSLs for Appendix IV Constituents	11
4.0	STATISTICAL ANALYSIS RESULTS	12
5.0	FUTURE GROUNDWATER MONITORING PROGRAM	13
6.0	REFERENCES	14

LIST OF TABLES

Table 1	Monitoring Well Network Summary
Table 2	Groundwater Elevation Summary
Table 3	Hydraulic Gradient and Groundwater Flow Velocity Calculations
Table 4	Appendix III Analytical Data Summary – Sampling Performed on April 26, 2021
Table 5	Appendix IV Analytical Data Summary – Sampling Performed on April 26, 2021
Table 6	Summary of Basic Groundwater Statistics and GWPS for Appendix IV Constituents
Table 7	Evaluation of SSLs for Appendix IV Constituents

LIST OF FIGURES

Figure 1	Groundwater Monitoring Well Location Map
Figure 2	Potentiometric Surface Map – April 26, 2021

LIST OF APPENDICES

Appendix A	Field Groundwater Sampling Forms
Appendix B	Laboratory Analytical Reports
Appendix C	Statistical Calculations and Time-series Graphs

LIST OF ACRONYMS

CCPC Crisp County Power Commission

CCR Coal Combustion Residuals
C.F.R. Code of Federal Regulations

DNR Department of Natural Resources

DO Dissolved Oxygen

ft/day Feet per Day ft/ft Feet per Foot

GA EPD Georgia Environmental Protection Division

GWPS Groundwater Protection Standard
Kh Horizontal Hydraulic Conductivity
MCL Maximum Contaminant Level

mg/L Milligram per Liter

MW Megawatt

NTU Nephelometric Turbidity Units
ORP Oxidation Reduction Potential

PE Professional Engineer

QA/QC Quality Assurance/Quality Control

RSL Regional Screening Levels

SESD Science and Ecosystem Support Division

SOP Standard Operating Procedure SSI Statistically Significant Increase SSL Statistically Significant Level

s.u. Standard Unit

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

EXECUTIVE SUMMARY

Crisp County Power Commission (CCPC) has been monitoring the groundwater quality at the Plant Crisp Ash Pond (ash pond) in accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (C.F.R.) Part 257, Subpart D] and the Georgia Environmental Protection Division (GA EPD) Rule for CCR (391-3-4-.10). The timeline and status of the monitoring program and the relevant findings and conclusions derived for the reporting period (i.e., between January and June 2021) are summarized as follows:

- In compliance with 40 C.F.R. §257.94, a groundwater detection monitoring program was conducted between February 2017 and September 2017.
- In compliance with 40 C.F.R. §257.95(a), CCPC initiated an assessment monitoring program in March 2018. The ash pond has been monitored under the assessment monitoring program from March 2018 through the current reporting period.
- Pursuant to Rule 391-3-4-.10(6), no Statistically Significant Levels above the Groundwater Protection Standards were identified during the reporting period.
- Pursuant to 40 C.F.R. §257.95(d)(1) and GA EPD CCR Rule, assessment monitoring will continue at the ash pond. The next assessment report will be submitted to the GA EPD in January 2022.

1.0 INTRODUCTION

1.1 Overview

Geosyntec Consultants (Geosyntec) of Kennesaw, Georgia, at the request of Crisp County Power Commission (CCPC), prepared this 2021 Semi-Annual Groundwater Monitoring Report for the ash pond located at CCPC's Plant Crisp. Plant Crisp is located in Warwick, Georgia, on the southern end of Lake Blackshear (**Figure 1**). CCPC installed a groundwater monitoring well network in February 2017 in compliance with the requirements of the 40 Code of Federal Regulations (C.F.R.) §257.91 and the subsequently enacted Section 391-3-4-.10(6) of the Georgia Environmental Protection Division (GA EPD) Coal Combustion Residuals (CCR) Rule (eff. March 28, 2018).

A groundwater detection monitoring program was conducted between February and September 2017 in compliance with the requirements of the 40 C.F.R. §257.94. The first Annual Groundwater Monitoring Report summarizing the results of detection groundwater monitoring activities was prepared in January 2018 [Geosyntec, 2018]. In compliance with 40 C.F.R. §257.95(a), CCPC initiated an assessment monitoring program for the ash pond in March 2018. The assessment monitoring for this reporting period consisted of performing a semi-annual monitoring event in April 2021. The April 2021 assessment monitoring event was performed for constituents listed in Appendix III to part §257 (referred herein as Appendix III constituents) and Appendix IV to part §257 (referred herein as Appendix IV constituents) (40 C.F.R. §257.95(b)). The groundwater monitoring and statistical analysis were performed consistent with the Groundwater Monitoring and Statistical Analysis Plan prepared for the ash pond in October 2017 and revised in December 2019.

The purpose of this report is to present a summary of the April 2021 groundwater assessment monitoring activities and associated laboratory and statistical analysis results. The report has been prepared to meet the semi-annual reporting requirements of GA EPD CCR Rule $391-3-4-.10(6)(c)^{1}$.

¹ The semi-annual groundwater monitoring report is a state requirement under DNR Rule 391-3-4.10(6)(c): The owner or operator of a CCR unit must submit a semi-annual report to the Division to coincide with the semi-annual sampling event. A qualified groundwater scientist must certify the report.

In summary, the April 2021 sampling event detected concentrations of 40 C.F.R. §257, Appendix IV constituents, but at concentrations below their respective USEPA's maximum contaminant levels (MCLs).

1.2 Site History

Plant Crisp is a dual-fuel (coal and natural gas) electrical generation facility, with a 12.5megawatt (MW) capacity coal-fired unit and 5 MW capacity natural gas combustion turbine. The byproducts of power generation from the combustion of coal (commonly referred to as CCR) at Plant Crisp included mainly fly ash and bottom ash. The CCR was disposed into a 6.5-acre ash pond located within the plant property using wet sluicing method. The ash pond was constructed in the mid-1970s, as an unlined pond [CDM] Smith, 2014], and started to receive sluiced ash in 1976. The coal burning and resulting ash disposal was conducted until August 2015. The coal burn unit was briefly re-activated in December 2016 to eliminate an existing small coal supply. The last burning of coal took place on March 22, 2017. In October 2016, CCPC submitted notification of closure by removal in accordance with 40 C.F.R. §257. The original schedule for closure would have removed CCR by February 2018, however, Georgia Department of Natural Resources (DNR) CCR management regulations were issued in November 2016, DNR Rule 391-3-4-.07(5), after the initial closure plan. DNR Rule 391-3-4-.07(5) required GA EPD's approval of CCR management plans for the receiving landfill. GA EPD approved the CCR management plan for the receiving landfill on March 28, 2019. On 19 November 2018, CCPC submitted a CCR permit application for the existing impoundment and closure of the ash pond by removal in accordance with 40 C.F.R. §257.102(c) and the GA EPD rule 391-3-4- .10 and other GA EPD regulations as applicable. GA EPD issued a permit on August 17, 2020.

The electrical generation facility, ash pond, and hydroelectric dam are located on approximately 100 acres of CCPC property near Lake Blackshear and the Flint River (**Figure 1**). The ash pond has embankments on the western and partially southern and northern sides. The maximum embankment height is on the west end and is approximately 22 feet [Rizzo Associates, 2015]. The ash pond was classified as a low hazard unit during the United States Environmental Protection Agency's (USEPA) coal combustion residuals impoundment assessment, dated February 2014 and conducted by CDM Smith [CDM Smith, 2014].

1.3 Geologic and Hydrogeologic Setting

CCPC is located in the Coastal Plain Physiographic Province of Georgia, which is generally characterized by gently rolling to nearly flat topography. The Coastal Plain Physiographic Province of Georgia is characterized by Late Cretaceous and Cenozoic sedimentary rocks and sediments. Based on the Geologic Map of Georgia [Georgia Department of Natural Resources, 1997], the Site is underlain by Quaternary-aged stream alluvium and undifferentiated terrace deposits underlain by residual soil derived by the weathering of Eocene-aged limestone. Beneath the residuum is Eocene-aged limestone (the Ocala Limestone) that dips gently to the southeast and generally thicken in that direction [Hicks et al, 1987]. The Ocala Limestone comprises part of the Upper Floridan aquifer, which is underlain by low permeability zones within the Lisbon Formation (argillaceous limestone). Subsurface investigations at the Site generally describe the surface geology as embankment fill, alluvium, residuum and limestone bedrock [ND&T, 1994, Rizzo, 2015, Geosyntec, 2019].

The uppermost aquifer at the Site is the unconfined groundwater aquifer that occurs in the alluvium and some upper portions of the residuum. The alluvial sediments consist of alternating layers of clay, silty sand, silty clayey sand, and some gravel (SM, SM-SC). While most of the of the residuum consists of clays and calcareous clay (marl) with limestone fragments, there may be sandy clay and gravelly clay lenses that could act along with the overlying alluvium as part of the uppermost aquifer. Based on field observations (increasing clay content with depth in the residuum and increasing blow counts with depth), the hydraulic conductivity of the residuum is expected to decline with depth. As such, the lower part of the residuum is likely a confining unit and represents the lower boundary of the uppermost aquifer. Recharge to the uppermost aquifer is from infiltration of precipitation. In March 2019, Geosyntec performed slug testing in four monitoring wells to estimate horizontal hydraulic conductivity (K_h) of the uppermost aquifer. Based on the slug testing results, the geometric mean of the K_h in the uppermost aquifer was estimated as 1.44×10^{-4} cm/sec (0.41 ft/day). This value is similar to the K_h estimated for the alluvium and residuum during previous investigations.

Under natural conditions, the water table surface is a subdued reflection of the topography, with groundwater generally flowing from southeast to northwest from the higher elevations to lower elevations toward the Flint River. The movement of groundwater in the uppermost aquifer can be characterized as porous media flow.

1.4 Groundwater Monitoring Well Network

In accordance with 40 C.F.R. §257.91, a groundwater monitoring system was installed that (1) consists of a sufficient number of wells; (2) is installed at appropriate locations and depths to yield groundwater samples from the uppermost aquifer; and (3) represents the groundwater quality both upgradient of the units (i.e., background conditions) and passing the waste boundary of the units. The number, spacing, and depths of the groundwater monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions. The well network was certified by a professional engineer (PE) on June 14, 2017; the certification is maintained in the facility's Operating Record. Well construction diagrams of the monitoring wells were included in the January 2018 Annual Groundwater Monitoring Report [Geosyntec, 2018] as well as the Groundwater Monitoring and Statistical Analysis Plan [Geosyntec, 2020]. The certified groundwater monitoring well network includes one monitoring well (MW-U1) located upgradient of the ash pond, representing background groundwater conditions, and three monitoring wells (MW-D1, MW-D2, and MW-D3) located downgradient of the ash pond. The locations of the monitoring wells are shown on Figure 1 and well construction details are provided in **Table 1**. The monitoring wells are screened in the uppermost aquifer underlying the ash pond, which occurs in the alluvium and some upper portions of the residuum.

CCPC does not currently plan to expand the certified monitoring well network. During the monitoring period: (i) all wells were functioning properly; (ii) there were no dry wells; and (iii) no additional well installation or abandonment was conducted. Inspection of certified well network by a qualified groundwater scientist will be performed by 2022 (i.e., within five years after installation).

2.0 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS RESULTS

2.1 Groundwater Sampling and Laboratory Analysis

The groundwater assessment monitoring event for this reporting period was conducted on April 26, 2021. The groundwater samples were collected in accordance with the USEPA Science and Ecosystem Support Division (SESD) Standard Operating Procedure (SOP No. SESDPROC-301-R4) [USEPA, Athens, Georgia, 2017]. Prior to sampling, depth to groundwater and total well depth were measured for each monitoring well using an electrical water level indicator. The water level indicator was cleaned between wells following the decontamination procedure listed under SESDPROC-205-R3 [USEPA, Athens, Georgia, 2015]. Depth to groundwater data and groundwater elevations are summarized in **Table 2**. The groundwater elevation data was used to prepare a potentiometric surface map, provided as **Figure 2**. Based on the potentiometric surface map, groundwater flow direction is from southeast towards northwest with a hydraulic gradient of approximately 0.012 ft/ft (**Table 3**). The average horizontal groundwater flow velocity was calculated using Darcy's equation as approximately 8.7 ft/year (**Table 3**).

Groundwater sampling was performed using a low-flow sampling method. To assess that the samples collected were representative of the groundwater in the aquifer, field water quality parameters were measured during purging using a Horiba U-52 water quality meter. These parameters include temperature, pH, conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO). Measurements were taken within an enclosed flow-through cell to minimize effects of contact with air. Turbidity was measured using Hach 2100P turbidity meter. Purging was considered complete when the following stabilization criteria were met for at least three consecutive measurements (as defined by USEPA SESD SOP No. SESDPROC-301-R4):

- pH \pm 0.1 Standard Units;
- Conductivity ± 5%;
- dissolved oxygen ± 0.2 milligrams per liter (mg/L) or $\pm 10\%$ change in saturation, whichever is greater;
- Turbidity measured less than 10 nephelometric turbidity units (NTU); and
- ORP \pm 20 mV.

Field groundwater sampling forms are provided in **Appendix A.**

The groundwater samples were collected in laboratory-provided containers. Following sampling, the bottles were sealed, labeled, packed in ice, and shipped under chain-of-custody protocol to Eurofins Test America Laboratories in Pensacola, FL, a certified laboratory pursuant to the Georgia State Program. The chain-of-custody procedures were conducted in accordance with SESDPROC-005-R2 [USEPA, Athens, Georgia 2013]. The groundwater samples were analyzed for Appendix III constituents (i.e., boron, calcium, chloride, fluoride, sulfate, total dissolved solids) and Appendix IV constituents (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, radium 226 and 228 combined, selenium, and thallium). The metal constituents were analyzed as total recoverable as the samples were not field-filtered. Radium was analyzed at Eurofins Test America Laboratories in St. Louis, MO. Groundwater pH, also an Appendix III constituent, was measured in the field using a Horiba water quality meter.

Field duplicate samples (DUP-16) was collected from MW-D3 for quality assurance/quality control (QA/QC). The duplicate sample was collected in laboratory-provided bottles and submitted under the same chain-of-custody as the primary samples for analysis of the same parameters by Test America laboratories.

2.2 Groundwater Monitoring Results

Laboratory analytical results for Appendix III constituents from the April 2021 monitoring event are summarized in **Table 4**. Appendix III constituents were detected in the upgradient and downgradient monitoring well locations.

Laboratory analytical results for Appendix IV constituents are summarized in **Table 5**. Low levels of Appendix IV constituents (arsenic, barium, fluoride, and radium 226 and 228 combined) were detected in the downgradient monitoring wells. Similarly, low levels of barium, chromium, fluoride, and radium 226 and 228 combined were detected in the background/upgradient monitoring well MW-U1. **Table 5** shows that the detected concentrations of Appendix IV constituents are below their respective USEPA's maximum contaminant levels (MCLs). Low level Appendix IV constituents detected during the April 2021 monitoring event can be naturally occurring as some of these constituents were also detected at low concentrations in the background well. Laboratory reports are included in **Appendix B**.

7

The April 2021 assessment monitoring results were statistically evaluated in accordance with 40 C.F.R. §257.93(g). The statistical analysis results are discussed in Section 3.

3.0 ASSESSMENT MONITORING STATISTICAL DATA ANALYSIS PROCEDURES

Statistical analysis of the groundwater data collected during the assessment monitoring event was performed in accordance with the methods listed in the Groundwater Monitoring and Statistical Analysis Plan [Geosyntec, 2020b]. The statistical methods meet the requirements of the methods specified in 40 C.F.R. §257.93(f) (1) through (5) and the performance standards specified in 40 C.F.R. §257.93(g). Statistical analysis was performed using SanitasTM v.9.6.05 software for Appendix IV constituents.

The primary objectives of the statistical data analysis conducted during this reporting period are:

- (i) To calculate statistically derived background concentration for each Appendix IV constituent. The statistically derived background concentration is used as Groundwater Protection Standard (GWPS) when the statistically derived background concentration is higher than the MCL (if an MCL has been established under 40 C.F.R. §161.62 and 40 C.F.R. §141.66) or the standard listed under 40 C.F.R. §257.95 (h)(2) for those constituents without an established MCL.
- (ii) To construct a lower confidence interval for each constituent at each downgradient well and compare the lower confidence interval to an established GWPS and determine whether a statistically significant level (SSL) is present at any of the downgradient monitoring wells.

3.1 GWPS for Appendix IV Constituents

As a first step in developing the GWPS, groundwater data from the background well were screened for potential outlier (anomalous) data. In addition to visual inspection using time-series plots, statistical methods, such as the USEPA 1989 Outlier Screening method, were used to identify outliers in the groundwater data (when the data was normally distributed). Tukey's Outlier Screening method was used when background well data was not normally distributed. Although outliers were detected, they were not removed from the statistical analysis due to: (i) a large number of non-detects in the data set; and (ii) the USEPA Unified Guidance recommendation on screening data only if the source of the outlier is known. Data distribution was checked using Shapiro Wilk method at 99% confidence level. This method is appropriate for a sample size of less than 50. For

statistical data analysis, non-detect laboratory results were replaced with their reporting limit in accordance with the USEPA Unified Guidance recommendation [USEPA, 2009].

The USEPA Unified Guidance recommends utilizing upper tolerance limits (UTL) from the background well to establish background concentrations. In addition, the CCR Rule lists the UTL method, calculated using data from the background well, as one of the methods acceptable for CCR data analysis [40 C.F.R. §257.93(f)(3)]. As a result, the GWPSs for the site were developed utilizing the UTL method and generally consisted of the following procedures:

- Parametric tolerance limits (95% coverage and 95% confidence) were constructed when the background data followed a normal or transformed-normal distribution.
- Non-parametric tolerance limits were calculated for data sets with greater than 50% non-detect values, and for data sets which do not follow a normal or transformed-normal distribution.
- The UTL was calculated for each constituent using background well data collected during the eight detection monitoring events and the assessment monitoring events conducted to date. As described in 40 C.F.R. §257.95(h), the GWPS is:
 - (1) the maximum contaminant level (MCL) established under 40 C.F.R. §141.62 and §141.66.
 - (2) where an MCL has not been established:
 - (i) Cobalt 0.006 mg/L;
 - (ii) Lead 0.015 mg/L;
 - (iii) Lithium 0.040 mg/L; and
 - (iv) Molybdenum 0.100 mg/L.
 - (3) the UTL computed from background well data for constituents where the UTL is higher than the MCL or rule-specified GWPS.

- USEPA's updated GWPS have not yet been incorporated under GA EPD's CCR Rule². The GWPS based on the GA EPD CCR Rule is:
 - (1) the federally established MCL for Appendix IV constituents.
 - (2) where an MCL has not been established, the background concentration for Appendix IV constituents.
 - (3) background levels for constituents where the background level is higher than the MCL for Appendix IV constituents.

3.2 Evaluation of SSLs for Appendix IV Constituents

The USEPA Unified Guidance [USEPA, 2009] recommends utilizing the lower confidence interval from a downgradient well along with the double quantification rule to evaluate SSLs. A 99% lower confidence interval was constructed for each constituent at each downgradient well and the double quantification rule was used to evaluate SSLs. Under this rule, an SSL can be concluded if the lower confidence limit is higher than the GWPS.

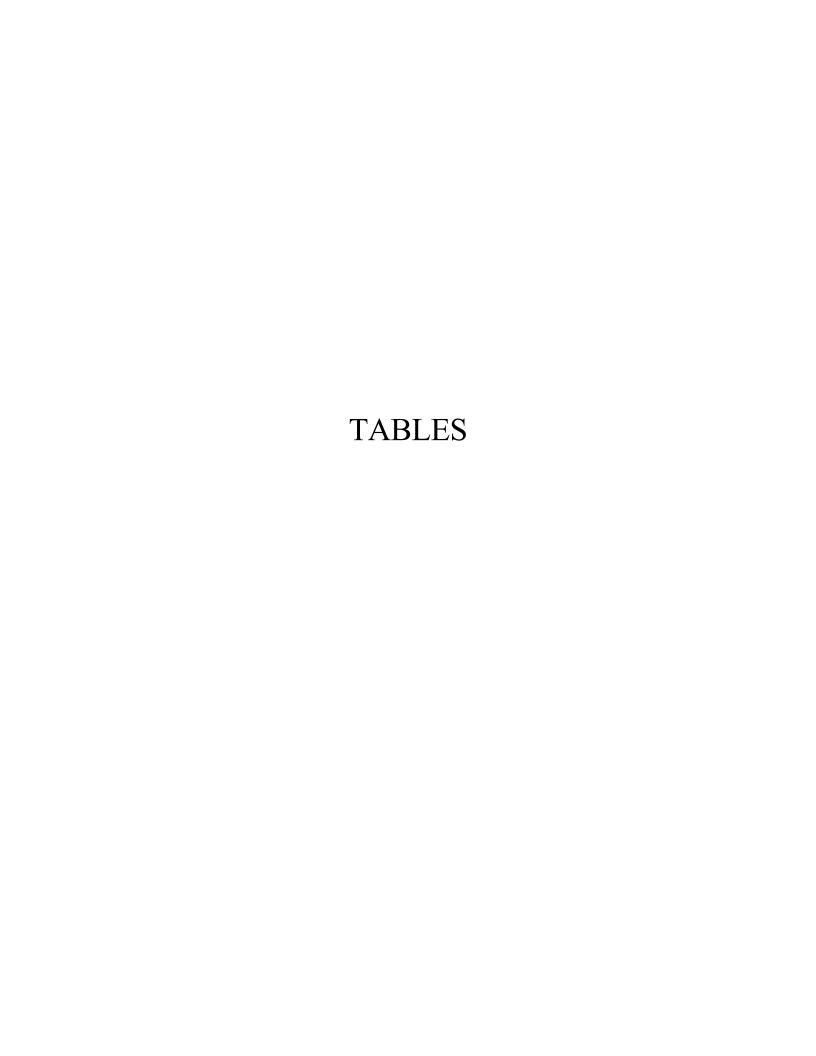
² GA EPD has adopted Federal CCR Rule as provided in 80 Fed. Reg. 21468 (April 17, 2015); as amended at 80 Fed. Reg. 37988 (July 2, 2015) and 81 Fed. Reg. 51807 (August 5, 2016). Portions of these federal rules have since been repealed. See, e.g. 83 Fed. Reg. 36,435 (July 30, 2018).

4.0 STATISTICAL ANALYSIS RESULTS

The statistical analysis results are summarized in **Table 6**, which shows the (i) ratio of non-detects to total number of samples; (ii) basic statistics for each constituent in a monitoring well such as minimum and maximum; (iii) UTL of each constituent constructed based on the background well data; (iv) an MCL value for the constituent (if available) established under 40 C.F.R. §161.62 and 40 C.F.R. §141.66 or the standard listed under 40 C.F.R. §257.95(h)(2); and (v) the selected GWPS for each constituent.

Table 7 shows the lower confidence limit constructed for each constituent at each downgradient well and the results of comparison between the lower confidence limit and the selected GWPS to evaluate if there are any SSLs. Comparison of the lower confidence limit to the selected GWPS revealed no SSLs during the monitoring period. The SanitasTM statistical calculations and time-series graphs for each constituent are provided in **Appendix C**.

5.0 FUTURE GROUNDWATER MONITORING PROGRAM


Data collected during the assessment monitoring event indicated that Appendix IV constituents detected in the downgradient monitoring wells were below their respective GWPS. Pursuant to the CCR Rule 40 C.F.R. §257.95(d)(1) and GA EPD's CCR Rules, CCPC will continue groundwater sampling semi-annually for Appendix III and Appendix IV constituents. The next semi-annual groundwater monitoring report will be submitted by 31 January 2022 pursuant to the Georgia rule 391-3-4-.10(6)(c).

6.0 REFERENCES

- CDM Smith, (2014). "Assessment of Dam Safety of Coal Combustion Surface Impoundments Final Report: Crisp County Power Commission Plant Crisp Warwick, Georgia." Prepared for U.S. Environmental Protection Agency Washington, D.C., Rev. 1, February 2014.
- Federal Register (2018) Vol. 83 No. 146, 36435, July 30, 2018. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One. Part One). https://www.gpo.gov/fdsys/pkg/FR-2018-07-30/pdf/2018-16262.pdf
- Geologic Map of Georgia, (1976, Reprinted in 1997), Georgia Department of Natural Resources, Geologic and Water Resources Division, Georgia Geologic Survey.
- Geosyntec Consultants. (2018). Annual Groundwater Monitoring Report. Plant Crisp Ash Pond. Prepared for Crisp County Power Commission, January 2018.
- Geosyntec Consultants. (2019). Supplemental Hydrogeologic Assessment Report for Plant Crisp Ash Pond Revision 1, Crisp County Power Commission. December 2019.
- Geosyntec Consultants. (2020a). 2020 Semi-annual Groundwater Monitoring Report. Crisp County Power Commission, Plant Crisp Ash Pond. July 2020.
- Geosyntec Consultants. (2020b). Groundwater Monitoring and Statistical Analysis Plan. Crisp County Power Commission, Plant Crisp Ash Pond. April 2020.
- Hicks, D.W., Gill, H.E., and Longsworth S.A. (1987). Hydrogeology, Chemical Quality, and Availability of Ground Water in the Upper Floridan Aquifer, Albany Area, Georgia (USGS).
- Northrop, Devine & Tarbell, Inc. (1994). Report of Geotechnical Investigation, Lake Blackshear Dam Repairs, November 1994.
- Rizzo Associates. (2015). "Dam Safety Assessment Report Plant Crisp Coal Combustion Waste Impoundment." Submitted to Crisp County Power Commission, 14-5232, Rev. 0, January 2015.

- USEPA (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.
- USEPA (2013). Science and Ecosystem Support Division (SESD, Athens, Georgia) Sample and Evidence Management (SESDPROC-005-R2).
- USEPA (2015). Science and Ecosystem Support Division (SESD, Athens, Georgia) Field Equipment Cleaning and Decontamination (SESDPROC-205-R3).
- USEPA (2017). Science and Ecosystem Support Division (SESD, Athens, Georgia) Standard Operating Procedure (SOP) (SESDPROC-301-R4).

Table 1. Monitoring Well Network Summary Crisp County Power Commission Plant Crisp Ash Pond

Well ID	Hydraulic Location	Installation Date	Well Depth (ft, BTOC)	Easting	Northing	TOC Elevation (ft, MSL)	Screen Interval Elevation (ft, MSL)
MW-D1	Downgradient	2/22/2017	23.16	2365315.12	670708.47	241.77	218.85-228.85
MW-D2	Downgradient	2/21/2017	23.37	2365308.73	671291.61	232.66	209.64-219.64
MW-D3	Downgradient	2/22/2017	23.54	2365715.53	671291.07	233.78	210.52-220.52
MW-U1	Upgradient	2/23/2017	36.95	2366420.55	669996.79	249.52	212.78-222.78

Notes:

ft = feet

MSL = above mean sea level.

TOC = Top of casing

BTOC = Below top of casing

The easting, northing, and TOC elevations were obtained from a revised survey performed by J.B. Faircloth & Associates, P.C. on 26 November 2019

Table 2. Groundwater Elevation Summary Crisp County Power Commission Plant Crisp Ash Pond

	TOC Elevation	4/26/2021					
Well ID	(ft, MSL)	Depth to Groundwater (ft, BTOC)	Groundwater Elevation (ft, MSL)				
MW-D1	241.77	14.2	227.57				
MW-D2	232.66	12.45	220.21				
MW-D3	233.78	5.61	228.17				
MW-U1	249.52	9.52	240.00				
Lake Blackshear			236.91*				

Notes:

ft = feet

MSL = mean sea level.

TOC = Top of casing

BTOC = Below top of casing

*: Surface water elevation

Table 3. Hydraulic Gradient and Groundwater Flow Velocity Calculations Crisp County Power Commission Plant Crisp Ash Pond

Date		Hydra	ulic Gradient	Groundwater Flow Velocity			
Date	h ₁ (ft)	h ₂ (ft)	Δl (ft)	$\Delta h/\Delta l$ (ft/ft)	K _h (ft/day)	ηe	V (ft/year) ¹
4/26/2021	240.00	220.21	1,710	0.012	0.41	0.20	8.7

Notes:

ft = feet

ft/day = feet per day

ft/ft = feet per foot

h1 and h2 = groundwater elevation for MW-U1 and MW-D2, respectively.

 $\Delta h/\Delta l = hydraulic gradient$

 K_h = hydraulic conductivity geometric mean of 0.41 ft/day estimated using slug testing in monitoring wells.

 $\Delta l = distance between MW-U1 and MW-D2.$

ηe = effective porosity (estimated based on fine-grained sand aquifer) (Kresic, 2007)

V = groundwater flow velocity

⁽¹⁾ Groundwater flow velocity equation: $V = [K * (\Delta h/\Delta l)] / \eta e$

Table 4. Appendix III Analytical Data Summary - Sampling Performed on April 26, 2021 Crisp County Power Commission Plant Crisp Ash Pond

Appendix III to 40 CFR Part 257 - Constituents for Detection Monitoring

			(1)	Upgradient Well ID	Downgradient Well ID				
Constituent	Unit	$\mathbf{MCL}^{(1)}$	MDL ⁽²⁾	2422.114	MW D1	1411/154	MW-D3		
				MW-U1	MW-D1	MW-D2	MW-D3	DUP-16	
Boron	mg/L	N/A	0.018	ND ^3+	0.17	0.12	0.19	0.19	
Calcium	mg/L	N/A	0.63	33	29	120	93 B^5-	100	
Chloride	mg/L	N/A	1.4	ND F1	1.6 J	5.0	3.9	3.9	
Fluoride	mg/L	4	0.032	0.1 B	0.090 JB	0.12 B	0.19 B	0.22 B	
Sulfate	mg/L	N/A	1.4	1.8 J	26	16	28	29	
pH ⁽³⁾	SU	N/A		7.91	6.82	6.87	7.02	7.03	
Total Dissolved Solids	mg/L	N/A	5.0	98	110	370	360	350	

Notes:

- J result is less than the reporting level but greater than or equal to the MDL and the reported concentration is an approximate value.
- B compound was found in the blank and sample.
- F1 MS and/or MSD recovery exceeds control limits.
- ^3+ Reporting Limit Check Standard is outside acceptance limits, high biased
- ^5- Linear Range Check (LRC) is outside acceptance limits, low biased.
- SU standard unit.

N/A - not applicable because the constituent does not have an MCL.

- -- There is no MDL for pH.
- 1. MCLs indicate USEPA maximum contaminant levels. MCLs are established under 40 CFR §141.62 and 40 CFR §141.66.
- 2. MDL indicates minimum detection limit, which is the minimum concentration of analyte that can be measured and reported.
- 3. The pH value was recorded at the time of sample collection in the field.

Table 5. Appendix IV Analytical Data Summary - Sampling Performed on April 26, 2021 Crisp County Power Commission Plant Crisp Ash Pond

Appendix IV to 40 CFR Part 257 - Constituents for Assessment Monitoring

			USEPA's Health-		Upgradient Well ID		Downgra	dient Well ID	
Constituent	Unit	MCL ⁽¹⁾	Based	MDL ⁽³⁾	MW-U1	MW-D1	MW-D2	MV	V-D3
			Level ⁽²⁾		MW-01	WW-D1	WW-D2	MW-D3	DUP-16
Antimony	mg/L	0.006	N/A	0.0015	ND	ND	ND	ND	ND
Arsenic	mg/L	0.01	N/A	0.000390	ND	ND	ND	0.0010 J	0.00080 J
Barium	mg/L	2	N/A	0.00070	0.0021 J	0.017	0.14	0.061	0.065
Beryllium	mg/L	0.004	N/A	0.000170	ND	ND	ND	ND	ND
Cadmium	mg/L	0.005	N/A	0.000280	ND	ND	ND	ND	ND
Chromium	mg/L	0.1 ⁽⁴⁾	N/A	0.0010	0.0011 J	ND	ND	ND	ND
Cobalt	mg/L	N/A	0.006	0.00056	ND	ND	ND	ND	ND
Fluoride	mg/L	4	N/A	0.032	0.10 B	0.09 JB	0.12 B	0.19 B	0.22 B
Lead	mg/L	0.015 ⁽⁵⁾	N/A	0.000290	ND	ND	ND	ND	ND
Lithium	mg/L	N/A	0.04	0.0019	ND	ND	ND	ND	ND
Mercury	mg/L	0.002 ⁽⁶⁾	N/A	0.00007	ND	ND	ND	ND	ND
Molybdenum	mg/L	N/A	0.1	0.0045	ND	ND	ND	ND	ND
Radium 226 and 228 Combined	pCi/L	5	N/A	(7)	0.609	-0.033 U	0.773	0.352 U	0.395 U
Selenium	mg/L	0.05	N/A	0.00082	ND	ND	ND	ND	ND
Thallium	mg/L	0.002	N/A	0.000120	ND	ND	ND	ND	ND

Notes:

ND - the constituent was not detected above the analytical method detection limit (MDL).

- B compound was found in the blank and sample.
- J concentration is less than the reporting level but greater than or equal to the MDL and the reported concentration is an approximate value.
- U result is less than the sample detection limit.

N/A - not applicable for the constituent.

- 1. MCLs indicate USEPA maximum contaminant levels. MCLs are established under 40 CFR §141.62 and 40 CFR§141.66.
- 2. USEPA's health-based level as Groundwater Protection Standard (40 CFR §257.95 (h)(2)).
- 3. MDL indicates minimum detection limit, which is the minimum concentration of analyte that can be measured and reported.
- 4. MCL value for total chromium.
- 5. Lead Treatment Technology Action Level is 0.015 mg/L.
- 6. Value for inorganic mercury.
- 7. During the analysis of radium, background concentrations are substracted, thus each sample have a different Minimum Detectable Concentration (MDC). The MDCs were as follows: 0.451 pCi/L for MW-U1, 0.524 pCi/L for MW-D1, 0.440 pCi/L for MW-D2, 0.478 pCi/L for MW-D3, and 0.597 pCi/L for DUP-14.

Table 6. Summary of Basic Groundwater Statistics and GWPS for Appendix IV Constituents Crisp County Power Commission Plant Crisp Ash Pond

Appendix IV to Part 257 - Constituents for Assessment Monitoring	Well ID	Number of Samples	Number of Non-detects	% Non-detects	Minimum	Maximum	Upper Tolerance Limit	Maximum Contaminant Level (MCL established under 40 CFR §161.62 and 40 CFR §141.66) or Groundwater Protection Standard (GWPS listed under 40 CFR §257.95(h)(2))	Selected Groundwater Protection Standard (GWPS) for the Site
	MW-U1	12	12	100%	< 0.0005	< 0.0025	0.0025		
Antimony [mg/L]	MW-D1	12	12	100%	< 0.0005	< 0.0025		0.006	0.006
	MW-D2	12	12	100%	< 0.0005	< 0.0025		0.000	0.000
	MW-D3	12	12	100%	<0.0005	< 0.0025			
	MW-U1	16	14	88%	0.00015 (JB)	<0.0013	0.0013		
Arsenic [mg/L]	MW-D1 MW-D2	16 16	16 12	100% 75%	<0.00025 0.00027 (B)	<0.0013 <0.0013		0.01	0.01
-	MW-D2 MW-D3	16	2	13%	0.00027 (B) 0.00048 (J)	0.0016		-	
	MW-U1	16	0	0%	0.00048 (3)	0.0062	0.0062		
-	MW-D1	16	0	0%	0.0095	0.027	0.0002	_	
Barium mg/L -	MW-D2	16	0	0%	0.087	0.190		2	2
	MW-D3	16	0	0%	0.061	0.230			
	MW-U1	12	12	100%	< 0.0004	< 0.0025	0.002		
Bervilium Img/L1 -	MW-D1	12	12	100%	<0.0004	<0.0025		0.004	0.004
<u> </u>	MW-D2 MW-D3	12	12 12	100%	<0.0004 <0.0004	<0.0025 <0.0025		-	
	MW-U1	13	13	100%	<0.0002	<0.0025	0.001		
Cadmilim Imo/L.L	MW-D1	13	13	100%	< 0.0002	< 0.0025		0.005	0.005
	MW-D2 MW-D3	13	12 12	92% 92%	0.000075 (J) 0.000071 (J)	<0.0025 <0.0025		-	
	MW-U1	14	0	0%	0.00071 (3)	0.0023	0.0051		
Chromium [mg/L]	MW-D1	14	13	93%	< 0.0005	0.0034		0.1	0.1
	MW-D2	14	13	93%	<0.0005	0.0038		-	0.1
	MW-D3 MW-U1	14 16	13 16	93%	<0.0005 <0.0005	0.0029 <0.0025	0.0025		
Ī	MW-D1	16	16	100%	< 0.0005	< 0.0025	0.0023	0.006	0.0025*
_	MW-D2	16	14	88%	0.00047 (J)	< 0.0025		0.000	
	MW-D3 MW-U1	16 16	1	6% 6%	0.00035 (J) 0.040	<0.0025 0.100	0.12		
-	MW-D1	16	0	0%	0.040	0.100	0.12		
	MW-D2	16	0	0%	0.040	0.190		4	4
	MW-D3	16	0	0%	0.060	0.130	0.0012		
	MW-U1 MW-D1	12 12	11 11	92% 92%	<0.00025 <0.00025	<0.0013 <0.0013	0.0013	-	
	MW-D2	12	10	83%	<0.00025	< 0.0013		0.015	0.0013*
	MW-D3	12	12	100%	< 0.00025	< 0.0013			
-	MW-U1 MW-D1	14 14	13 13	93% 93%	0.00034 (J) <0.0005	<0.0025 <0.005	0.0025		
I ifhiiim Img/I I =	MW-D1 MW-D2	14	12	86%	<0.0005	<0.005		0.04	0.0025*
	MW-D3	14	11	79%	0.00048 (J)	< 0.005			
<u>_</u>	MW-U1 MW-D1	12 12	11 11	92% 92%	0.000099 (JB) 0.000077 (JB)	<0.0002 <0.0002	0.0002		
Mercury Ima/I	MW-D1 MW-D2	12	10	83%	0.000077 (JB) 0.00011 (JB)	<0.0002		0.002	0.002
	MW-D3	12	11	92%	0.00011 (JB)	< 0.0002			
-	MW-U1	15	15	100%	<0.002	<0.01	0.01		
Makibdanim Ima/I I b	MW-D1 MW-D2	15 15	15 12	100% 80%	<0.002 0.0012 (J)	<0.015 <0.015		0.10	0.01*
_	MW-D3	15	4	27%	0.0012 (J) 0.0017 (J)	<0.013			
-	MW-U1	16	3	19%	0.000	0.615	1.15		
Radium 226 and 228 228 Combined [pCi/L]	MW-D1	16 16	3 4	19% 25%	0.099 0.014	<5 <5		- 5	5
-	MW-D2 MW-D3	16	4	25%	0.014	<5 <5		-	
	MW-U1	14	7	50%	0.00039	< 0.0013	0.0013		
Selenium [mg/L]	MW-D1	14	13	93%	<0.00025	<0.0013		0.05	0.05
	MW-D2 MW-D3	14 14	11 10	79% 71%	<0.00025 0.00021 (J)	<0.0013 0.0028		-	
	MW-U1	16	16	100%	<0.0001 <0.0001	< 0.0028	0.0005		
Thallium [mg/L]	MW-D1	16	16	100%	< 0.0001	< 0.0005		0.002	0.002
	MW-D2	16	6	38%	0.000085 (J)	< 0.0005	İ	0.002	

Notes:

mg/L = milligrams per liter

pCi/L = picocuries per liter

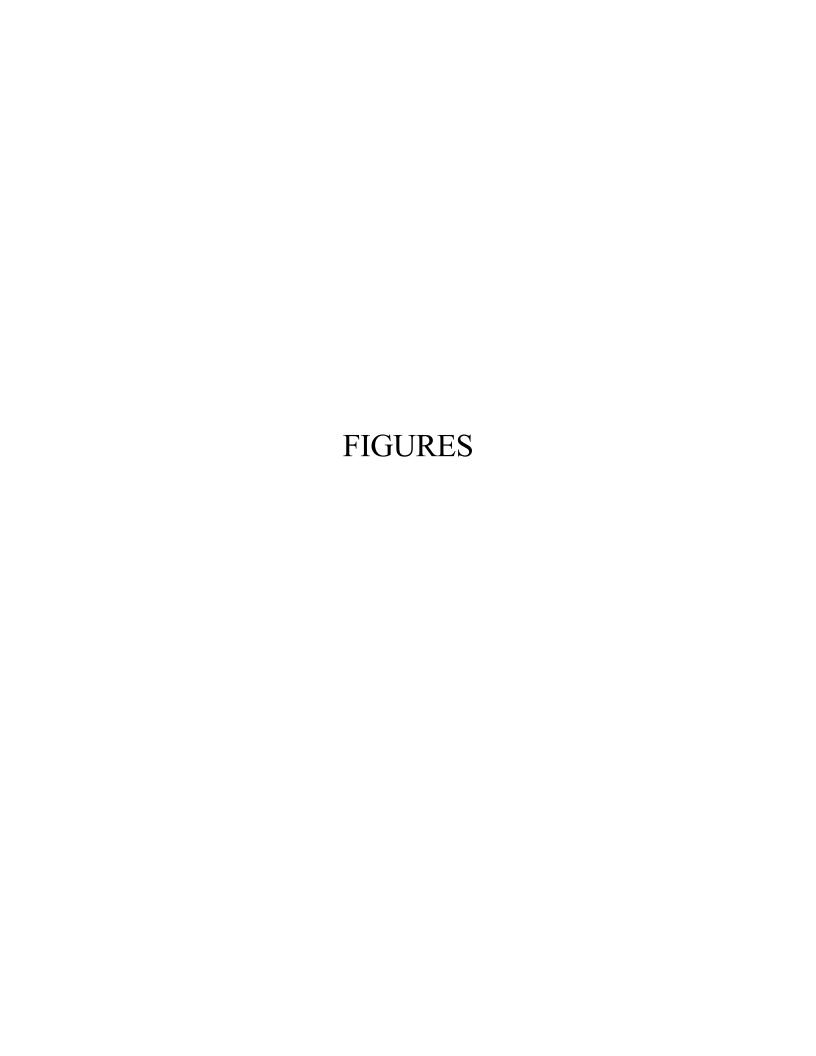
ND = Not Detected

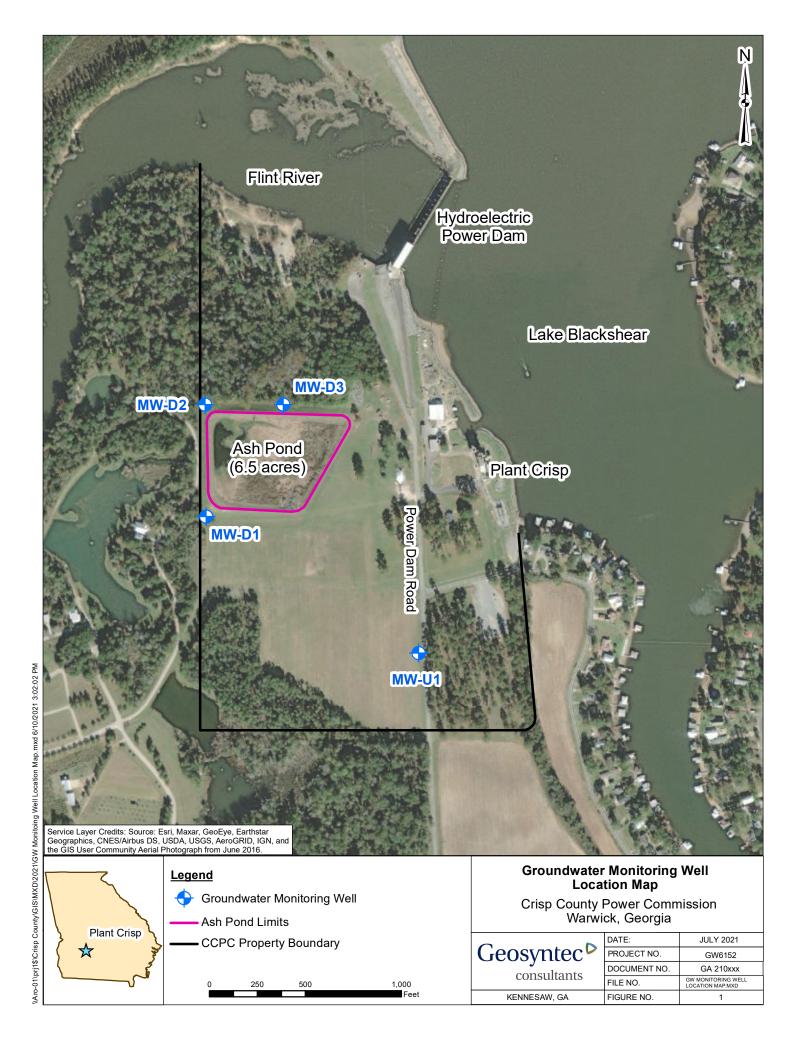
NA = Not Available

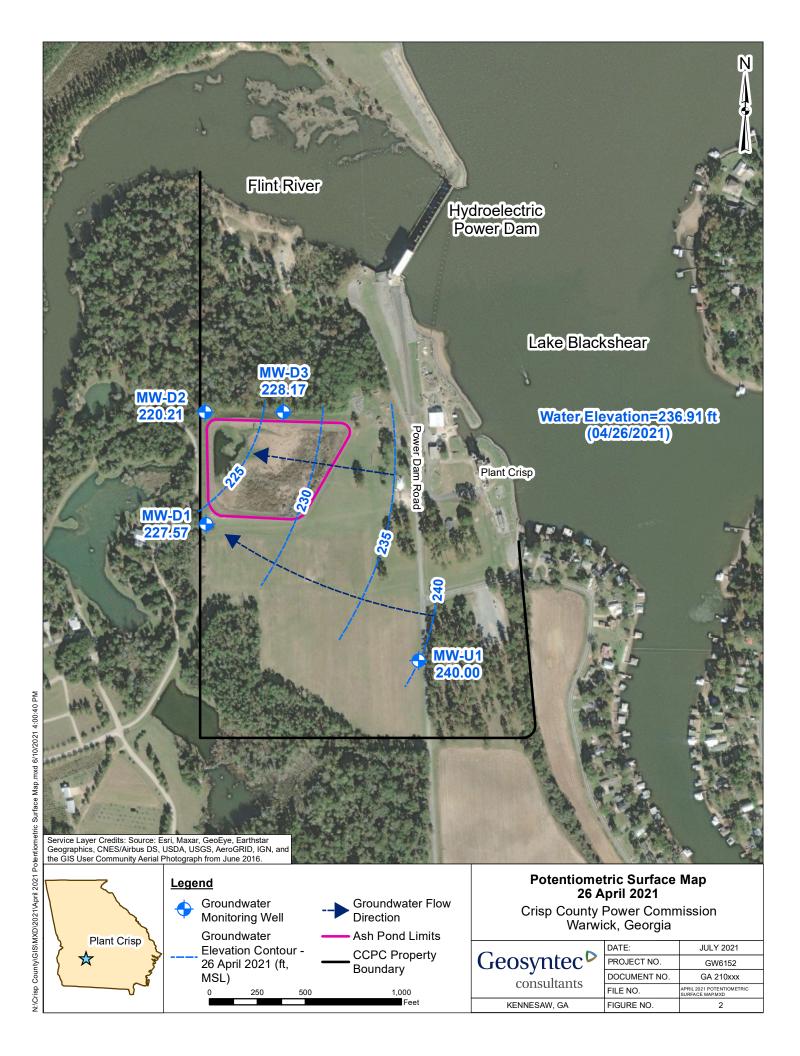
Highlighted cells show the background well (MW-U1).

- J Result is less than the reporting level but greater than or equal to the method detection limit (MDL) and the concentration is an approximate value.
- B Compound was found in the blank and sample.
- *: The background level or UTL was selected as GWPS because USEPA's updated GWPS have not yet been incorporated under GA EPD Rule.

Table 7. Evaluation of SSLs for Appendix IV Constituents **Crisp County Power Commission Plant Crisp Ash Pond**


Appendix IV to Part 257 - Constituents for Assessment Monitoring	Well ID	Selected Groundwater Protection Standard (GWPS) for the Site (From Table 8)	Lower Confidence Limit if a constituent is Detected During the April 2021 Monitoring Period	Concentrations in Downgradient Well Show Statistically Significant Level (SSL) Above GWPS?
	MW-U1		В	ackground Well
	MW-D1	0.006	ND	No
Antimony [mg/L]	MW-D2	0.006	ND	No
	MW-D3		ND	No
	MW-U1		В	ackground Well
Argania [ma/I]	MW-D1	0.01	0.00025	No
Arsenic [mg/L]	MW-D2	0.01	0.00083	No
	MW-D3		0.00071	No
	MW-U1		В	ackground Well
Barium [mg/L]	MW-D1	2	0.01	No
Ծայայու [mg/L]	MW-D2		0.1234	No
	MW-D3		0.1244	No
	MW-U1		В	ackground Well
Beryllium [mg/L]	MW-D1	0.004	ND	No
	MW-D2		ND	No
	MW-D3 MW-U1		ND	No Background Well
	MW-D1		ND	No
Cadmium [mg/L]	MW-D2	0.005	ND	No
	MW-D3		ND	No
	MW-U1			ackground Well
Chromium [mg/L]	MW-D1	0.1	ND	No
	MW-D2 MW-D3		ND	No No
	MW-U1		ND B	Background Well
	MW-D1	0.0025	ND	No
Cobalt [mg/L]	MW-D2	0.0025	ND	No
	MW-D3		ND	No
	MW-U1			ackground Well
Fluoride [mg/L]	MW-D1 MW-D2	4	0.06	No No
	MW-D3		0.1	No
	MW-U1			ackground Well
Lead [mg/L]	MW-D1	0.0013	ND	No
	MW-D2	0.0013	ND	No
	MW-D3		ND	No
	MW-U1 MW-D1		ND	ackground Well No
Lithium [mg/L]	MW-D2	0.0025	ND	No
	MW-D3		ND	No
	MW-U1			ackground Well
Mercury [mg/L]	MW-D1	0.002	ND	No N-
, , ,	MW-D2 MW-D3		ND ND	No No
	MW-U1			Background Well
Molada F 73	MW-D1	0.01	ND	No No
Molybdenum [mg/L]	MW-D2	0.01	ND	No
	MW-D3		ND	No
Radium 226 and 228	MW-U1			ackground Well
228 Combined	MW-D1 MW-D2	5	0.153 0.184	No No
[pCi/L]	MW-D2 MW-D3		0.339	No No
[pCi/L]		I	•	Background Well
_	MW-U1			
	MW-U1 MW-D1	0.05	ND	No
	MW-U1 MW-D1 MW-D2	0.05	ND ND	No No
	MW-U1 MW-D1 MW-D2 MW-D3	0.05	ND ND ND	No No No
Selenium [mg/L]	MW-U1 MW-D1 MW-D2 MW-D3 MW-U1		ND ND ND	No No No Sackground Well
	MW-U1 MW-D1 MW-D2 MW-D3	0.005	ND ND ND	No No No


 $\frac{\textbf{Notes:}}{mg/L = milligrams per liter}$


pCi/L = picocuries per liter

ND = Not Detected

Highlighted cells show the background well (MW-U1).

APPENDIX A

Field Groundwater Sampling Forms

WATER LEVEL MEASUREMENTS

Site Name: CRISP & POWER Location: WARWICK GA

Date: 4/26/21

Sampling Personnel: 5. RANDALL Field Conditions: CLEAR 60°

Well ID	Time	TOC Elevation	Depth to Water (ft)	Well Depth (ft)	GW Elevation	Field Observations
MW-D3	0830	0901	5.41	22.52		
MW-02	0840	2911-	12.45	22.40		
MW-DI	0850	0912	14.2	22.60		
MW-41	0900	8931	9.52	37.15		
4				70		
END	05	DAY	WATER	LEVERS		
MW-D3	1630		5.67	22.52		
MW-DZ			12.54	22.40		
MW-D1	1640		14.02	ZZ.60		
MW-U1	1650		9.48	37.15		
		1)				
	*					
 		-				

GROUNDWATER SAMPLING LOG

	NAME: CRISP COUNTY POWER COMMIS WELL NO: MW-DI				SAMPLE ID: MW-DI- 2021 0424					DATE: 4/26/21			
WELL NO:	MW-U	<i>)</i>		O/AMI	PURGING DATA								
		1		Lv		REEN INTERVA		STATIC D	EPTH		IRGE PUMP TY		
WELL TUBING DIAMETER (inches): 2 DIAMETER (inches): 0.2					DEPTH: 17 feet to			77 feet TO WATER		4. 2 OR BAILER:		PP	
DIAMETER WELL VOL	(inches): 2	1 WELL VOLU	JME = (TOTA	AL WELL D	EPTH -	STATIC DEP	HTQW	(ATER) X	WELL CAPACI	TY	ot = 1.2	5 gallons	
(only fill out	if applicable)		= (7.2.	60	teet - 🏸	4.2	. 10	56C) / -).16 BING LENGTH)	•		ganon	
FOUIPMEN	T VOLUME PU	RGE: 1 EQUI	PMENT VOL.	= PUMP V	OLUME +	(TUBING CAP	CITY	X TU	BING LENGTH)	+ FLOW C			
(only fill out	if applicable)			=	gallons	+("	allons/fo	oot X	feet)	+	gallons =		
INITIAL PU	IMP OR TUBING	6	FINAL PUM	IP OR TUB	ING	PUR	GING	T: /255	PURGING ENDED AT:	1342	PURGED (gal	ons): 2.9	
DEPTH IN	WELL (feet):	17	DEPTH IN \			1 1 1001		COND.	DISSOLVED				
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	l P	H TEMP	(ci	ircle units)	OXYGEN (circle units)	TURBID	ITY ORP	COLOR (describe	
TIME	PURGED	PURGED	RATE	WATE	K `un	its) (°C)		mhos/cm or µS/cm	(mg/L) or	(NTUs	(1114)	(dessine)	
	(gallons)	(gallons)	(gpm)	(feet)	170	11			% saturation	10	165	CLEAN	
1256	0.0	0.0	0.066	14.1	-			291	41.7	2	198	CLER	
1317	1.25	1.25	0.060	14.2		20 24.2		191	58.0	 	198		
1322	0.33	1.58	0.066			27 24.		195	36.2	+ +	19		
13220	0.33	1.91	0.044			24 24.		195	33.8		209		
1332	0.33	2.24	0.066			24 23.		186	37.8 38.0		205	CLEA	
337	0.33	2.57	0.066			25 23.		189	38.3		ZOE		
1842	0.33	2.90	0.066	14-17	3 6.	25 23.	5	/89	30.5	,		CLBY	
					1							-	
TUBING I	PACITY (Gallon	PACITY (Gal./F	1.): 1/8 = 0.	1" = 0.04 .0006; 3 BP = Blade	/16" = 0.0 der Pump;	014; 1/4" = 0	ctric Sub	3" = 0.37; 5/16" = 0. bmersible Pu	.004; 3/8" =	5" = 1.02; 0.006; 1 Peristaltic Pt	6" = 1.47; /2" = 0.010; ump; O = 0	12" = 5.88 5/8" = 0.016 ther (Specify)	
TUBING I	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal./F	1.): 1/8 = 0.	.0006; 3 BP = Blado	/16" = 0.0 der Pump;	014; 1/4" = 0 ESP = Ele	.0026; etric Sub	5/16" = 0. bmersible Pu	004; 3/8" = 1 mp; PP = F	0.006; 1	/2" = 0.010; ump; O = 0	5/8" = 0.016 other (Specify)	
PURGING	ISIDE DIA. CAF	CODES: B	1.): 1/8 = 0.	BP = Blade	/16" = 0.0 der Pump; S/ R(S) SIGN	ESP = Ele AMPLING ATURE(S):	.0026; etric Sub	5/16" = 0. bmersible Pu	mp; PP = F	0.006; 1	/2" = 0.010; ump; O = 0	5/8" = 0.016 other (Specify)	
PURGING SAMPLED	EQUIPMENT OF SECTION O	CODES: B AFFILIATION:	E): 1/8 = 0. = Bailer;	SAMPLER	/16" = 0.0 der Pump; S/ R(S) SIGN	014; 1/4" = 0 ESP = Ele	.0026; etric Sub	5/16" = 0. bmersible Pu A	sampling initiated p-Filtered:	0.006; 1 Peristaltic Pu	/2" = 0.010; ump; O = 0 SAMPLII ENDED	5/8" = 0.016 other (Specify)	
SAMPLED PUMP OR	EQUIPMENT COME BY (PRINT) / A	CODES: B AFFILIATION:	1.): 1/8 = 0.	SAMPLER	/16" = 0.0 der Pump; S/R(S) SIGN	ESP = Ele AMPLING ATURE(S):	.0026; etric Sub	5/16" = 0. bmersible Pu A	mp; PP = F SAMPLING INITIATED / D-FILTERED: \(\) ion Equipment T	0.006; 1 Peristaltic Pt AT: /343 Y (N) ype:	12" = 0.010; 2mp;	5/8" = 0.016 other (Specify)	
SAMPLED SAMPLED PUMP OR DEPTH IN	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet):	CODES: B	E): 178 = 0.	SAMPLER TUBING MATERIA	der Pump; Sign Sign L CODE:	ESP = Ele AMPLING ATURE(S): LDPE	.0026; etric Sub	5/16" = 0. bmersible Pu A FIELD Filtrati	sampling initiated p-Filtered:	0.006; 1 Peristaltic Pt AT: /343 Y (N) ype:	12" = 0.010; ump;	5/8" = 0.016 other (Specify)	
PUMP OR DEPTH IN	EQUIPMENT C BY (PRINT) / A RANDAU TUBING I WELL (feet):	CODES: B AFFILIATION: CON: PUM	E Bailer;	SAMPLER TUBING MATERIA	der Pump; SR(S) SIGN L CODE:	ESP = Ele AMPLING ATURE(S): LDPE	DAT	5/16" = 0. bmersible Pu A FIELD Filtrationaced)	mp; PP = F SAMPLING INITIATED / D-FILTERED: Non Equipment T DUPLICATE INTEN	O.006; 1 Peristaltic Pt AT: /343 Y Y Y Y N N N N N N N N N N N	SAMPLIN SAMPLIN SAMPLIN G SAMPLIN G SAMPLIN G	SAMPLE PU	
SAMPLED SAMPLED PUMP OR DEPTH IN FIELD DE SAM	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO	CODES: B AFFILIATION: CODES: B AFFILIATION: CODES: B	Tion	SAMPLER TUBING MATERIA	der Pump; SAR(S) SIGN L CODE: TU	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (iii	.0026; etric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / D-FILTERED: You Equipment T DUPLICATE	O.006; 1 Peristaltic Pu AT: /343 Y Y Y Y Y Y Y Y Y Y Y N N	SAMPLIN SAMPLIN G EQUIPME	symple PUI FLOW RAT	
PUMP OR DEPTH IN	EQUIPMENT C BY (PRINT) / A RANDAU TUBING I WELL (feet):	CODES: B AFFILIATION: CON: PUM	E Bailer;	SAMPLER TUBING MATERIA SAM PRESER' USE	der Pump: SAR(S) SIGN. L CODE: TU IPLE PRE VATIVE ED	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III ADDED IN FIII	DATA Nrepla cluding to OL LD (mL)	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp: PP = F SAMPLING INITIATED / O-FILTERED: Non Equipment T DUPLICATE INTEN ANALYSIS	O.006; 1 Peristaltic Pt AT: /343 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	SAMPLIN SAMPLIN SAMPLIN G SAMPLIN G SAMPLIN G	symple PUI FLOW RAT	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE	EQUIPMENT OF SET	ON: PUM ER SPECIFICA MATERIAL	E Bailer; P Y TION VOLUME 1.9L	SAMPLER TUBING MATERIA SAM PRESER USE	der Pump; SA (S) SIGN L CODE: TU IPLE PRE VATIVE ED 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (IN ADDED IN FII	.0026; ctric Sub DAT. Q	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED // O-FILTERED: \(\) On Equipment T DUPLICATE ANALYSIS METI 9315, 9320, F Ra228	O.006; 1 Peristaltic Pu AT: /343 Y N ype: E: Y NDED S AND/OR HOD	SAMPLIN GEQUIPME NT CODE APP	SIZE: µm SAMPLE PUI FLOW RAT (mL per minu	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE	EQUIPMENT C BY (PRINT) / A CAN AU TUBING WELL (feet): CONTAMINATION # CONTAINERS	ON: PUM ER SPECIFICA MATERIAL CODE	E Bailer;	SAMPLER TUBING MATERIA SAM PRESER USE HNO	AG = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III TOTAL V ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PUI FLOW RAT (mL per minu 250	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 1	PACITY (Gal./F CODES: B AFFILIATION: ON: PUM ER SPECIFICA MATERIAL CODE HDPE	E Bailer; P Y TION VOLUME 1.9L	SAMPLER TUBING MATERIA SAM PRESER USE	AG = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (IN ADDED IN FII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Y N ype: E: Y NDED S AND/OR HOD	SAMPLIN GEQUIPME NT CODE APP	SAMPLE PU FLOW RAT (mL per minu) 250 250	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO PLE CONTAINES 1 1	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE	P Y CTION VOLUME 1.9L 1.0L	SAMPLER TUBING MATERIA SAM PRESER USE HNO	AG = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III TOTAL V ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	5/8" = 0.016 where (Specify) NG AT: /405 SIZE:	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO PLE CONTAINES 1 1	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE	P Y CTION VOLUME 1.9L 1.0L	SAMPLER TUBING MATERIA SAM PRESER USE HNO	AG = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III TOTAL V ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
SAMPLED PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO PLE CONTAINES 1 1 1	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE SEENT: V Y	E.): 1/8 = 0 Bailer; P Y CTION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA SAM PRESER USE HNO HNO	Afe" = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III TOTAL V ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1.	EQUIPMENT C BY (PRINT) / A RAND AU TUBING WELL (feet): CONTAINERS 1 1 1 1 WPLING COND Well Sign Pres	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE SEENT: V Y	E.): 1/8 = 0 Bailer; P Y CTION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA SAM PRESER USE HNO HNO	Afe" = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED 03 NE 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III TOTAL V ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per minu) 250 250	
SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1. 2.	EQUIPMENT C BY (PRINT) / A RANDAU TUBING WELL (feet): CONTAMINATIO PLE CONTAINERS 1 1 1 1 Well Sign Pres Well Access:	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE Sent:	P Y CTION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA PRESER USE HNG NOI HNG	der Pump; SAR(S) SIGN L CODE: TU IPLE PRE VATIVE ED 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III ADDED IN FIII	.0026; ctric Sub DAT.	5/16" = 0. bmersible Pu FIELD Filtrati aced) wet ice)	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1.	PLE CONTAINERS 1 1 1 1 MPLING CONE Well Sign Pres Well Access: Sampling & Pa	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE UTIONS: Sent: Y CLE	E Bailer; P Y TION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA PRESER USE HNG NOI HNG	der Pump; SA (S) SIGN L CODE: TU IPLE PRE VATIVE ED 03 NE 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III ADDED IN FIII	.0026; etric Sub DAT.	5/16" = 0. bmersible Pu A FIELD Filtrati aced) wet ice) FINAL pH	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1. 2.	PLE CONTAINERS 1 1 1 1 MPLING CONE Well Sign Pres Well Access: Sampling & Pa	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE UTIONS: Sent: Y CLE	E Bailer; P Y TION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA PRESER USE HNG NOI HNG	der Pump; SA (S) SIGN L CODE: TU IPLE PRE VATIVE ED 03 NE 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III ADDED IN FIII	.0026; etric Sub DAT.	5/16" = 0. bmersible Pu A FIELD Filtrati aced) wet ice) FINAL pH	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1. 2. 3.	PLE CONTAINERS 1 1 1 1 MPLING CONE Well Sign Pres Well Access: Sampling & Pa	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE UTIONS: Sent: Y CLE	E Bailer; P Y TION VOLUME 1.9L 1.0L 0.25L	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA PRESER USE HNG NOI HNG	der Pump; SA (S) SIGN L CODE: TU IPLE PRE VATIVE ED 03 NE 03	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (III ADDED IN FIII	.0026; etric Sub DAT.	5/16" = 0. bmersible Pu A FIELD Filtrati aced) wet ice) FINAL pH	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	O.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226,	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLIN	SAMPLE PU FLOW RAT (mL per min) 250 250	
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1. 2. 3.	PLE CONTAINERS 1 1 1 1 MPLING CONE Well Sign Pres Well Access: Sampling & Pa	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE UTIONS: Sent: Y CLE Urging Equipment that may Affect	EBailer; P Y Continue Tion VOLUME 1.9L 1.0L 0.25L Yes CAR EX ent Condition: St Sampling Pi	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA SAM PRESER USE HNI NOI HNI NO CEUE DO resent?	der Pump; SAR(S) SIGN L CODE: TU IPLE PRE VATIVE ED O3 NE O3 Yes	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (II ADDED IN FILL TOTAL N ADDED IN FILL SERVATION (III TOTAL N ADDED IN FILL TOTAL N AD	DAT Vrepla cluding v OL LD (mL)	5/16" = 0. bmersible Pu A FIELD Filtrati aced) wet ice) FINAL pH	mp; PP = F SAMPLING INITIATED / O-FILTERED: Non Equipment T DUPLICATE ANALYSIS METI 9315, 9320, F Ra228 SM4500 6020,	0.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226, 7, 2540C 7470A	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLI	SAMPLE PU FLOW RAT (mL per min) 250 250	
PURGING SAMPLED PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE FIELD SA 1. 2. 3. 4.	PLE CONTAINERS 1 1 1 1 MPLING CONE Well Sign Pres Well Access: Sampling & Pa	ON: PUM ER SPECIFICA MATERIAL CODE HDPE HDPE HDPE HDPE HDPE UTIONS: Sent: Y CLE	EBailer; P Y TION VOLUME 1.9L 1.0L 0.25L Yes ent Condition: tt Sampling Pi Glass; CG	SAMPLER TUBING MATERIA SAMPLER TUBING MATERIA SAM PRESER USE HNI NOI HNI NO CEUE DO resent?	AGE = 0.0 der Pump; SAR(S) SIGN TU IPLE PRE VATIVE ED O3 NE O3 Ver Yes	ESP = Ele AMPLING ATURE(S): LDPE BING Y SERVATION (in TOTAL N ADDED IN FILL TOTAL N ADDED IN	DAT Vrepla cluding v OL LD (mL)	5/16" = 0. bmersible Pu A FIELD Filtrati aced) wet ice) FINAL pH	mp; PP = F SAMPLING INITIATED / O-FILTERED: Vion Equipment T DUPLICATE INTEN ANALYSIS METI 9315, 9320, F Ra228 SM4500	0.006; 1 Peristaltic Pu AT: /343 Yype: E: Y NDED S AND/OR HOD Ra226, 7, 2540C 7470A	SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN SAMPLIN A SAMPLI	5/8" = 0.016 where (Specify) NG AT: /405 SIZE:	

NOTES: 1. Stabilization Criteria for range of variation of Last three consecutive readings (SESDPROC-301-R4)

pH: ± 0.1 units Specific Conductance: ± 5% Dissolved Oxygen: 0.2 mg/L or 10% change in saturation (whichever is greater) Turbidity: readings ≤ 10 NTU; ORP: ± 20 mV.

GROUNDWATER SAMPLING LOG

SITE					SIT	ΓE	od Dames	Dam Dand I	Manuick	GA 3179	3
	ISP COUN		R COMM					Dam Road, \	DATE:	4/26/	7 1
WELL NO:	MW-D	2		SAMPLE II			210420	0	DATE:	41261	<u>-1</u>
						ING DA			- DIVID	OF DUMP TV	
WELL	(inches): 2	TUBING	(:b\ 1	25 DEPT	H: 12 fe	INTERVAL et to 22 fe	STATIC eet TO WAT	ER (feet):] 2.	.45 ORE	GE PUMP TY BAILER:	PP
WELL VOL	UME PURGE:	1 WELL VOL	UME = (TOTA	L WELL DEPT	H - STA	TIC DEPTH T	O WATER) X	WELL CAPACI	TY gallons/foot	= /.	6 gailons
(only fill out	if applicable)	IDGE: 1 EQUI	= (22,4	= PUMP VOLU				UBING LENGTH)	+ FLOW CEL	LVOLUME	
(only fill out	if applicable)	NGL. I LUCI	, inciri TOL		ons + (ns/foot X	feet)	+	gallons =	gallons
	MP OR TUBINO	G /7 (FINAL PUMI DEPTH IN V	P OR TUBING	17	/ PURGIN	G ED AT: 095	PURGING ENDED AT:	1040	FOTAL VOLUI PURGED (gail	ME ons): 2.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/l) or % saturation	TURBIDIT (NTUs)	Y ORP (mv)	COLOR (describe)
7000	0,0	0.0	0.046	12.8	6.87	19.66	571	9.2	[3.0	134	CLEAR
1025	1.6	1.6	0.046		6.78		550	6.1	3.0	132	CLEAR
1030	0.33	1.93	0.066		4.79	20.13	551	4.9	Z.0	132	CLEAR
	0.33	2.26	0066	8		20.33	551	4.7	1.0	128	CLEVAN
1035	0.33	2.59	0.066	14.1	4.80	20.39	551	4.6	1.0	126	CLEAN
SAMPLED BY	ACITY (Gallon SIDE DIA. CAITY (GALLON CAITY) A CAITY (PRINT) / A CAITY A CAITY (PRINT) / A CAITY A CAITY (PRINT) / A CAITY A	PACITY (Gal./F CODES: B FFILIATION: C DN: PUMI R SPECIFICA	1): 1/8" = 0.0 = Bailer; B P Y N	SAMPLER(S) SI FUBING MATERIAL COD SAMPLE F	SAMP IGNATURE 2/.2 DE: L TUBING PRESERVA	SP = Electric LING DA E(S): CANA DPE Y N ATION (includi	5/16" = (Submersible P TA FIEL Filtra	SAMPLING INITIATED A D-FILTERED: Y tion Equipment T) DUPLICATE INTEN	eristaltic Pum	SAMPLIN ENDED A	T: //05 ZE: μm SAMPLE PUMF FLOW RATE
SAMPLE # ID CODE CONTAINERS		MATERIAL CODE	VOLUME	PRESERVATIV USED	ADDE	TOTAL VOL ED IN FIELD (9315, 9320, Ra		NT CODE	(mL per minute
	1			HNO3				Ra228 SM4500,		APP	250
	1	HDPE	1.0L	NONE				6020, 7		APP	250
	1	HDPE	0.25L	HNO3		(2)(R)(E)(R)	_	- 3020,1			
1. 2. 3.	Sampling & Pu	rging Equipme	PROBLEM nt Condition:	_No NO EXCE	LLEN		No			e e	
MATERIAL	CODES:	S = Silicone;		Clear Glass; O = Other (Sp rough) Peristali	oecify)	B = Bailer	Polyethylene;		SP = Electric	Submersible	= Polypropylene Pump;
SAMPLING	CUUIPMENI	R	FPP = Reverse	e Flow Peristalt	ic Pump;	SM = Straw	Method (Tubir	ng Gravity Drain);		r (Specify)	

NOTES: 1. Stabilization Criteria For range of variation of Last three consecutive readings (SESDPROC-301-R4)

pH: ± 0.1 units Specific Conductance: ± 5% Dissolved Oxygen: 0.2 mg/L or 10% change in saturation (whichever is greater) Turbidity: readings ≤ 10 NTU; ORP: ± 20 mV.

GROUNDWATER SAMPLING LOG

0800 DUP-16-20210426 LOCATION: 961 Power Dam Road, Warwick, GA 31796 NAME: CRISP COUNTY POWER COMMISSION DATE: SAMPLE ID: MW-03-20210424 WELL NO: MM D3 **PURGING DATA** PURGE PUMP TYPE WELL SCREEN INTERVAL STATIC DEPTH TUBING WELL TO WATER (feet): 5.61 PP DEPTH: 12 feet to 22 feet OR BAILER: DIAMETER (inches): 0.25 DIAMETER (inches): 2 WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TOWATER) X WELL CAPACITY (only fill out if applicable) = (2.2.52 | feet - 5.61 | V. feet) X 0.16 2.75 gallons/foot = 2.70 gallons TUBING LENGTH) + FLOW CELL VOLUME EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY (only fill out if applicable) gallons gallons = gallons/foot X gallons + (TOTAL VOLUME **PURGING** 17 **PURGING** FINAL PUMP OR TUBING INITIATED AT: / 110 PURGED (gallons): 3.74 INITIAL PUMP OR TUBING 12.06 1 ENDED AT: DEPTH IN WELL (feet): DEPTH IN WELL (feet): DISSOLVED COND DEPTH CUMUL. **OXYGEN** COLOR TURBIDITY ρН ORP (circle units) TEMP. PURGE VOLUME TO (circle units) VOLUME (standard (NTUs) (mv) (describe) TIME WATER (°C) umhos/cm mg/l) or % saturation RATE **PURGED** PURGED units) or µS/cm (gallons) (gpm) (feet) (gallons) CLEAR 151 6.5 7.02 21,92 522 10.2 0.0 0.0 0.066 1110 115 CLEAR 3.4 462 7.03 26.17 7.95 2.75 2.75 0.066 1151 CLEAR 3.7 114 458 7.03 26.49 8.08 **1** . **6** 6 0.066 0.33 1150 CLEAR 111 3.2 24.94 455 0.066 8.08 7.03 0.33 3,41 1201 CLEDAR 109 3.5 7.03 0.066 0.33 1206 3" = 0.37; 12" = 5.88WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1 5" = 1.02; 6" = 1.47; 4'' = 0.65; 2" = 0.16; 5/8" = 0.0165/16" = 0.004; 1/2" = 0.010: 3/8" = 0.006; 1/4" = 0.0026; O = Other (Specify) PP = Peristaltic Pump; ESP = Electric Submersible Pump; BP = Bladder Pump; PURGING EQUIPMENT CODES: B = Bailer; SAMPLING DATA SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING SAMPLED BY (PRINT) / AFFILIATION: 1210 ENDED AT: INITIATED AT: 5. RANDALL Sle FILTER SIZE: _ FIELD-FILTERED: Y (N) TUBING PLIMP OR TUBING Filtration Equipment Type: LDPE MATERIAL CODE: DEPTH IN WELL (feet): V N (N)replaced) DUPLICATE: **TUBING** (N) ٧ FIELD DECONTAMINATION: PUMP SAMPLIN SAMPLE PUMP SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLE CONTAINER SPECIFICATION FLOW RATE ANALYSIS AND/OR EQUIPME TOTAL VOL FINAL **PRESERVATIVE** (mL per minute) METHOD SAMPLE MATERIAL VOLUME NT CODE ADDED IN FIELD (mL) USED CONTAINERS CODE ID CODE APP 250 9315, 9320, Ra226, ----HNO3 1.9L **HDPE** 1 250 APP SM4500, 2540C NONE 1.0L 1 HDPF APP 250 6020, 7470A ----HNO₃ 0.25L HDPE 1 FIELD SAMPLING CONDITIONS: Well Sign Present: CLEAR Well Access: FXCE WENT EX CELLENT Sampling & Purging Equipment Condition: 3. Site Condition that may Affect Sampling Present? ___ Yes (describe below) LDPE = Low Density Polyethylene; HDPE = High Density Polyethylene; AG = Amber Glass; CG = Clear Glass; MATERIAL CODES: T = Teflon; O = Other (Specify) S = Siticone: ESP = Electric Submersible Pump; BP = Bladder Pump; APP = After (Through) Peristaltic Pump; B = Bailer: SAMPLING EQUIPMENT CODES: SM = Straw Method (Tubing Gravity Drain);

RFPP = Reverse Flow Peristaltic Pump; 1. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SESDPROC-301-R4) NOTES:

GROUNDWATER SAMPLING LOG

SITE	*			001011	SI	TE	1 Douer	Dam Road, \	Narwick	GA 31796	
		NTY POWE	R COMMI							126/202	
WELL NO:	MW-C	11		SAMPLE		- UI- ZO				LG I W	•
				1	L SCREEN	ING DA		DEPTH	PUR	GE PUMP TYP	PE PE
WELL	(b) 2	TUBING	R (inches): 0	25 DEP1	TH: 27 fe	et to 37 fe	et TO WA	TER (feet): 9,		BAILER:	PP
WELL VOL	(inches): 2	1 WELL VOLU	JME = (TOTA	L WELL DEPT	H - STA	TIC DEPTH T	D.WATER)	WELL CAPACI	TY	- 4	4.5 gallons
(only fill out	if applicable)		= (37,	15 feet	- 9,57	i	· leet) ^	0.16 TUBING LENGTH)	92	= 4,4	Z galloris
EQUIPMEN	T VOLUME PL	JRGE: 1 EQUI	MENT VOL.	PUMP VOLU	JME + (TUB	ING CAPACIT	YX				college
(only fill out	if applicable)		1		lons + (ns/foot X	feet)		gallons = TOTAL VOLUN	gallons
INITIAL PUI DEPTH IN \	MP OR TUBING WELL (feet):	³ ا ا	FINAL PUMP DEPTH IN W	OR TUBING ELL (feet):	17'	PURGIN	G DAT: /42	PURGING ENDED AT:	1555	PURGED (gaile	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN	TURBIDIT (NTUs)	(mv)	COLOR (describe)
1422	0.0	0.0	0.066	9.9	7.91	29.53	149	5.31	5	125	CLEASE
1540	4,5	4.5	0.066	10.1	7.92	24.12	155	4.07	1	146	CLEAN
1545	0.33	4.83	0.066	10.1	7.92	24.19	155	4,08		147	CLEME
1550	0.35	5.14	0.04	10.1	7.91	24.22	154	4.10	1	147	CLEAR
1555	0.33	5.49	0.066	10.2	7.92	24.15	155	4.14		147	CLEMA
1000									-		
											_
										_	
			75" - 0.00	1" = 0.04;	1,25" = 0.0	6: 2" = 0.1	6: 3" = 0.3		5" = 1.02;	The second second	12" = 5.88
WELL CAP	SIDE DIA. CA	s Per Foot): 0. PACITY (Gal./F	t.): 1/8" = 0.0	006; 3/16"	= 0.0014;	1/4" = 0.002	6; 5/16" =).006; 1/2' eristaltic Pum	7.7.2.1	5/8" = 0.016 her (Specify)
PURGING !	EQUIPMENT C	ODES: B	Bailer; B	P = Bladder P		SP = Electric		Pump; PP = P	enstantic i um	p. 0	io (spray)
SAMPLED	BY (PRINT) (FFILIATION:		AMPLER(S)	SAIVIF SIGNATURI	(S): O. L	!	SAMPLING INITIATED A	T: 14 d 0	SAMPLIN ENDED A	
PUMP OR	TUBING	Kande		UBING		LDPE		LD-FILTERED: Y		FILTER SI	
	WELL (feet):	DUI DUIM		MATERIAL CO	TUBING		eplaced)	DUPLICATE		(A)	
	CONTAMINATIO		-			ATION (includi		INTEN	DED	SAMPLIN	SAMPLE PUMP
		R SPECIFICAT		PRESERVATI		TOTAL VOL	FINA	ANALYSIS	AND/OR	.G EQUIPME	FLOW RATE (mL per minute)
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME '	USED		ED IN FIELD (MEIR		NT CODE	250
	1	HDPE	1.9L	HNO3				9315, 9320, R Ra22B	V IV.	APP	250
	1	HDPE	1.0L	NONE		200M2025		SM4500		APP APP	250
	1	HDPE	0.25L	HNO3		(2224)		6020, 7	4/UA	AFF	<
											7
US Accessor	MPLING COND									~	
		sent: Y		No							
		EXCEL		CLEAN				With the second			
		urging Equipme		DO SEE	M5 .	TO HAV	E (18	ARED			
		that may Affect					N				
₹.	5,10 5 51,1411011		. 5								
MATERIAL	L CODES:	AG = Amber (Clear Glass; O = Other (S		High Density	Polyethylene;	LDPE = Low [Density Polyet	hylene; PF	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES: A	PP = After (Th	rough) Perista	altic Pump;	B = Baile	r; BP = BI			Submersible er (Specify)	Pump;
		R	FPP = Revers	e Flow Perista	itic Pump;			oing Gravity Drain);		()	

NOTES: 1. Stabilization Criteria For range of Variation of Last three consecutive readings (SESDPROC-301-R4)

pH: ± 0.1 units Specific Conductance: ± 5% Dissolved Oxygen: 0.2 mg/L or 10% change in saturation (whichever is greater) Turbidity: readings ≤ 10 NTU; ORP: ± 20 mV.

APPENDIX B

Laboratory Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-202647-1

Laboratory Sample Delivery Group: Crisp Co. Power Client Project/Site: CCR App.III/IV GW Monitoring

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Dawit Yifru

Theyrous Whitmire

Authorized for release by: 5/13/2021 11:33:04 AM

Cheyenne Whitmire, Project Manager II (850)471-6222

Cheyenne.Whitmire@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

a

10

12

13

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	13
Chronicle	14
QC Association	16
QC Sample Results	19
Chain of Custody	24
Receipt Checklists	25
Certification Summary	26

4

5

7

9

10

11

13

14

Case Narrative

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Job ID: 400-202647-1

Laboratory: Eurofins TestAmerica, Pensacola

Narrative

Job Narrative 400-202647-1

Metals

Method 6020: The method blank for preparation batch 400-529524 and analytical batch 400-529803 contained Lithium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 6020: CRI recover outside SOP's criteria. The sample is ND; therefore, the data is reported. MW-U1-20210426 (400-202647-5)

Method 7470A: ICV was inadvertently omitted during the calibration process 400-529808. The associated laboratory control sample (LCS) met acceptance criteria and ICV passed when analyzed. Therefore, data is report. DUP-16-20210426 (400-202647-1), MW-D2-20210426 (400-202647-2), MW-D3-20210426 (400-202647-3), MW-D1-20210426 (400-202647-4), MW-U1-20210426 (400-202647-5), (LCS 400-529577/15-A), (MB 400-529577/14-A), (400-202594-Q-2-A), (400-202594-Q-2-B MS), (400-202594-Q-2-C MSD) and (400-202594-Q-2-A SD ^5)

General Chemistry

Method SM 4500 CI- E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 400-531000 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1 SDG: Crisp Co. Power

Client Sample ID: DUP-16-20210426

Lab Sample ID: 400-202647-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00080	J	0.0013	0.00039	mg/L		_	6020	Total
									Recoverable
Barium	0.065		0.0025	0.00070	mg/L	5		6020	Total
									Recoverable
Boron	0.19		0.050	0.018	mg/L	5		6020	Total
									Recoverable
Calcium	100		1.3	0.63	mg/L	25		6020	Total
									Recoverable
Total Dissolved Solids	350		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	3.9		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Fluoride	0.22	В	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	29		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	7.03				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D2-20210426

Lab Sample ID: 400-202647-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.14	0.0025	0.00070	mg/L	5	_	6020	Total
								Recoverable
Boron	0.12	0.050	0.018	mg/L	5		6020	Total
								Recoverable
Calcium	120	1.3	0.63	mg/L	25		6020	Total
								Recoverable
Total Dissolved Solids	370	5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	5.0	2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Fluoride	0.12 B	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	16	5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	6.87			SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D3-20210426

Lab Sample ID: 400-202647-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0010	J	0.0013	0.00039	mg/L		_	6020	Total
									Recoverable
Barium	0.061		0.0025	0.00070	mg/L	5		6020	Total
									Recoverable
Boron	0.19		0.050	0.018	mg/L	5		6020	Total
									Recoverable
Calcium	93	B ^5-	1.3	0.63	mg/L	25		6020	Total
									Recoverable
Total Dissolved Solids	360		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Chloride	3.9		2.0	1.4	mg/L	1		SM 4500 CI- E	Total/NA
Fluoride	0.19	В	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	28		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	7.02				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-D1-20210426

Lab Sample ID: 400-202647-4

Analyte	Result Quali	fier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Barium	0.017	0.0025	0.00070	mg/L		6020	Total
							Recoverable
Boron	0.17	0.050	0.018	mg/L	5	6020	Total
							Recoverable
Calcium	29	0.25	0.13	mg/L	5	6020	Total
							Recoverable
Total Dissolved Solids	110	5.0	5.0	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Pensacola

5/13/2021

Page 4 of 26

2

5

7

a

10

12

13

_ _ _ _

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring Job ID: 400-202647-1

SDG: Crisp Co. Power

Lab Sample ID: 400-202647-4

Lab Sample ID: 400-202647-5

Client Sample ID: MW-D1-20210426 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.6	J	2.0	1.4	mg/L	1	_	SM 4500 CI- E	Total/NA
Fluoride	0.090	JB	0.10	0.032	mg/L	1		SM 4500 F C	Total/NA
Sulfate	26		5.0	1.4	mg/L	1		SM 4500 SO4 E	Total/NA
Field pH	6.82				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-U1-20210426

– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Barium	0.0021	J	0.0025	0.00070	mg/L		6020	Total
Calcium	33		0.25	0.13	mg/L	5	6020	Recoverable Total Recoverable

Barium	0.0021 J	0.0025	0.00070	mg/L	5	6020	Iotal
							Recoverable
Calcium	33	0.25	0.13	mg/L	5	6020	Total
							Recoverable
Chromium	0.0011 J	0.0025	0.0010	mg/L	5	6020	Total
							Recoverable
Total Dissolved Solids	98	5.0	5.0	mg/L	1	SM 2540C	Total/NA
Fluoride	0.10 B	0.10	0.032	mg/L	1	SM 4500 F C	Total/NA
Sulfate	1.8 J	5.0	1.4	mg/L	1	SM 4500 SO4 E	Total/NA
Field pH	7.91			SU	1	Field Sampling	Total/NA

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Method Description Metals (ICP/MS)

Job ID: 400-202647-1

TAL PEN

SDG: Crisp Co. Power

Protocol	Laboratory
SW846	TAL PEN
SW846	TAL PEN
SM	TAI PEN

SW846

Metals (ICP/MS)	SW846	TAL PEN	
Mercury (CVAA)	SW846	TAL PEN	
Solids, Total Dissolved (TDS)	SM	TAL PEN	5
Chloride, Total	SM	TAL PEN	J
Fluoride	SM	TAL PEN	
Sulfate, Total	SM	TAL PEN	
Field Sampling	EPA	TAL PEN	
Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN	

Protocol References:

Method

6020

7470A SM 2540C

3005A

7470A

SM 4500 CI- E

SM 4500 SO4 E

Field Sampling

SM 4500 F C

EPA = US Environmental Protection Agency

Preparation, Mercury

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1

SDG: Crisp Co. Power

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
400-202647-1	DUP-16-20210426	Water	04/26/21 08:00	04/28/21 09:39	
400-202647-2	MW-D2-20210426	Water	04/26/21 10:45	04/28/21 09:39	
400-202647-3	MW-D3-20210426	Water	04/26/21 12:10	04/28/21 09:39	
400-202647-4	MW-D1-20210426	Water	04/26/21 13:45	04/28/21 09:39	
400-202647-5	MW-U1-20210426	Water	04/26/21 16:00	04/28/21 09:39	

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: DUP-16-20210426 Lab Sample ID: 400-202647-1

Date Collected: 04/26/21 08:00 **Matrix: Water** Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0015	U	0.0025	0.0015	mg/L		04/28/21 14:05	04/29/21 22:05	- 5
Arsenic	0.00080	J	0.0013	0.00039	mg/L		04/28/21 14:05	04/29/21 22:05	5
Barium	0.065		0.0025	0.00070	mg/L		04/28/21 14:05	04/29/21 22:05	5
Beryllium	0.00017	U	0.0020	0.00017	mg/L		04/28/21 14:05	04/29/21 22:05	5
Boron	0.19		0.050	0.018	mg/L		04/28/21 14:05	04/30/21 15:54	5
Cadmium	0.00028	U	0.0010	0.00028	mg/L		04/28/21 14:05	04/29/21 22:05	5
Calcium	100		1.3	0.63	mg/L		04/28/21 14:05	04/30/21 18:57	25
Chromium	0.0010	U	0.0025	0.0010	mg/L		04/28/21 14:05	04/29/21 22:05	5
Cobalt	0.00056	U	0.0025	0.00056	mg/L		04/28/21 14:05	04/29/21 22:05	5
Lead	0.00029	U	0.0013	0.00029	mg/L		04/28/21 14:05	04/29/21 22:05	5
Lithium	0.0019	U	0.0025	0.0019	mg/L		04/28/21 14:05	04/29/21 22:05	5
Molybdenum	0.0045	U	0.010	0.0045	mg/L		04/28/21 14:05	04/29/21 22:05	5
Selenium	0.00082	U	0.0013	0.00082	mg/L		04/28/21 14:05	04/29/21 22:05	5
Thallium	0.00012	U	0.00050	0.00012	mg/L		04/28/21 14:05	04/29/21 22:05	5
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000070	U	0.00020	0.000070	mg/L		04/29/21 11:00	04/29/21 17:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	350		5.0	5.0	mg/L			04/29/21 12:51	1
Chloride	3.9		2.0	1.4	mg/L			05/08/21 02:48	1
Fluoride	0.22	В	0.10	0.032	mg/L			05/10/21 16:20	1
Sulfate	29		5.0	1.4	mg/L			05/09/21 15:15	1
Method: Field Sampling -	Field Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.03				SU			04/26/21 07:00	1

5/13/2021

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 SDG: Crisp Co. Power Project/Site: CCR App.III/IV GW Monitoring

Client Sample ID: MW-D2-20210426 Lab Sample ID: 400-202647-2

Date Collected: 04/26/21 10:45 **Matrix: Water** Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0015	U	0.0025	0.0015	mg/L		04/28/21 14:05	04/29/21 22:09	5
Arsenic	0.00039	U	0.0013	0.00039	mg/L		04/28/21 14:05	04/29/21 22:09	5
Barium	0.14		0.0025	0.00070	mg/L		04/28/21 14:05	04/29/21 22:09	5
Beryllium	0.00017	U	0.0020	0.00017	mg/L		04/28/21 14:05	04/29/21 22:09	5
Boron	0.12		0.050	0.018	mg/L		04/28/21 14:05	04/30/21 15:58	5
Cadmium	0.00028	U	0.0010	0.00028	mg/L		04/28/21 14:05	04/29/21 22:09	5
Calcium	120		1.3	0.63	mg/L		04/28/21 14:05	04/30/21 19:01	25
Chromium	0.0010	U	0.0025	0.0010	mg/L		04/28/21 14:05	04/29/21 22:09	5
Cobalt	0.00056	U	0.0025	0.00056	mg/L		04/28/21 14:05	04/29/21 22:09	5
Lead	0.00029	U	0.0013	0.00029	mg/L		04/28/21 14:05	04/29/21 22:09	5
Lithium	0.0019	U	0.0025	0.0019	mg/L		04/28/21 14:05	04/29/21 22:09	5
Molybdenum	0.0045	U	0.010	0.0045	mg/L		04/28/21 14:05	04/29/21 22:09	5
Selenium	0.00082	U	0.0013	0.00082	mg/L		04/28/21 14:05	04/29/21 22:09	5
Thallium	0.00012	U	0.00050	0.00012	mg/L		04/28/21 14:05	04/29/21 22:09	5
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000070	U	0.00020	0.000070	mg/L		04/29/21 11:00	04/29/21 17:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	370		5.0	5.0	mg/L			04/29/21 12:51	1
Total Dissolved Solids	3/0							05/00/04 00:40	
Total Dissolved Solids Chloride	5.0		2.0	1.4	mg/L			05/08/21 02:48	1
		В	2.0 0.10	1.4 0.032	Ū			05/08/21 02:48	1
Chloride	5.0	В		0.032	Ū				1
Chloride Fluoride	5.0 0.12 16	В	0.10	0.032	mg/L			05/10/21 16:27	1
Chloride Fluoride Sulfate	5.0 0.12 16 Field Sampling	B Qualifier	0.10	0.032	mg/L mg/L	D	Prepared	05/10/21 16:27	1 1 Dil Fac

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 SDG: Crisp Co. Power Project/Site: CCR App.III/IV GW Monitoring

Client Sample ID: MW-D3-20210426 Lab Sample ID: 400-202647-3

Date Collected: 04/26/21 12:10 **Matrix: Water** Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0015	U	0.0025	0.0015	mg/L		04/29/21 10:32	04/29/21 22:20	- 5
Arsenic	0.0010	J	0.0013	0.00039	mg/L		04/29/21 10:32	04/29/21 22:20	5
Barium	0.061		0.0025	0.00070	mg/L		04/29/21 10:32	04/29/21 22:20	5
Beryllium	0.00017	U	0.0020	0.00017	mg/L		04/29/21 10:32	04/29/21 22:20	5
Boron	0.19		0.050	0.018	mg/L		04/29/21 10:32	05/10/21 12:45	į
Cadmium	0.00028	U	0.0010	0.00028	mg/L		04/29/21 10:32	04/29/21 22:20	
Calcium	93	B ^5-	1.3	0.63	mg/L		04/29/21 10:32	05/10/21 12:48	2
Chromium	0.0010	U	0.0025	0.0010	mg/L		04/29/21 10:32	04/29/21 22:20	5
Cobalt	0.00056	U	0.0025	0.00056	mg/L		04/29/21 10:32	04/29/21 22:20	į
Lead	0.00029	U	0.0013	0.00029	mg/L		04/29/21 10:32	04/29/21 22:20	
Lithium	0.0019	U	0.0025	0.0019	mg/L		04/29/21 10:32	04/29/21 22:20	5
Molybdenum	0.0045	U	0.010	0.0045	mg/L		04/29/21 10:32	04/29/21 22:20	5
Selenium	0.00082	U	0.0013	0.00082	mg/L		04/29/21 10:32	04/29/21 22:20	5
Thallium	0.00012	U	0.00050	0.00012	mg/L		04/29/21 10:32	04/29/21 22:20	5
Method: 7470A - Mercury (CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000070	U	0.00020	0.000070	mg/L		04/29/21 11:00	04/29/21 17:16	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	360		5.0	5.0	mg/L		·	04/29/21 12:51	
Chloride	3.9		2.0	1.4	mg/L			05/08/21 02:48	1
Fluoride	0.19	В	0.10	0.032	mg/L			05/10/21 16:30	1
Sulfate	28		5.0		mg/L			05/09/21 15:15	
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.02				SU			04/26/21 11:10	

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 SDG: Crisp Co. Power Project/Site: CCR App.III/IV GW Monitoring

Client Sample ID: MW-D1-20210426 Lab Sample ID: 400-202647-4

Matrix: Water

Date Collected: 04/26/21 13:45 Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0015	U	0.0025	0.0015	mg/L		04/28/21 14:05	04/29/21 22:13	5
Arsenic	0.00039	U	0.0013	0.00039	mg/L		04/28/21 14:05	04/29/21 22:13	5
Barium	0.017		0.0025	0.00070	mg/L		04/28/21 14:05	04/29/21 22:13	5
Beryllium	0.00017	U	0.0020	0.00017	mg/L		04/28/21 14:05	04/29/21 22:13	5
Boron	0.17		0.050	0.018	mg/L		04/28/21 14:05	04/30/21 16:02	5
Cadmium	0.00028	U	0.0010	0.00028	mg/L		04/28/21 14:05	04/29/21 22:13	5
Calcium	29		0.25	0.13	mg/L		04/28/21 14:05	04/30/21 16:02	5
Chromium	0.0010	U	0.0025	0.0010	mg/L		04/28/21 14:05	04/29/21 22:13	5
Cobalt	0.00056	U	0.0025	0.00056	mg/L		04/28/21 14:05	04/29/21 22:13	5
Lead	0.00029	U	0.0013	0.00029	mg/L		04/28/21 14:05	04/29/21 22:13	5
Lithium	0.0019	U	0.0025	0.0019	mg/L		04/28/21 14:05	04/29/21 22:13	5
Molybdenum	0.0045	U	0.010	0.0045	mg/L		04/28/21 14:05	04/29/21 22:13	5
Selenium	0.00082	U	0.0013	0.00082	mg/L		04/28/21 14:05	04/29/21 22:13	5
Thallium	0.00012	U	0.00050	0.00012	mg/L		04/28/21 14:05	04/29/21 22:13	5
Method: 7470A - Mercury ((CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000070	U	0.00020	0.000070	mg/L		04/29/21 11:00	04/29/21 17:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	110		5.0	5.0	mg/L			04/29/21 12:51	1
Chloride	1.6	J	2.0	1.4	mg/L			05/08/21 02:48	1
Fluoride	0.090	JB	0.10	0.032	mg/L			05/10/21 16:34	1
Sulfate	26		5.0	1.4	mg/L			05/09/21 15:15	1
Method: Field Sampling - I	Field Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.82				SU			04/26/21 12:45	1

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 SDG: Crisp Co. Power Project/Site: CCR App.III/IV GW Monitoring

Client Sample ID: MW-U1-20210426 Lab Sample ID: 400-202647-5

Date Collected: 04/26/21 16:00 **Matrix: Water** Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.0015	U	0.0025	0.0015	mg/L		04/28/21 14:05	04/29/21 22:17	- 5
Arsenic	0.00039	U	0.0013	0.00039	mg/L		04/28/21 14:05	04/29/21 22:17	5
Barium	0.0021	J	0.0025	0.00070	mg/L		04/28/21 14:05	04/29/21 22:17	5
Beryllium	0.00017	U	0.0020	0.00017	mg/L		04/28/21 14:05	04/29/21 22:17	5
Boron	0.018	U ^3+	0.050	0.018	mg/L		04/28/21 14:05	04/29/21 22:17	5
Cadmium	0.00028	U	0.0010	0.00028	mg/L		04/28/21 14:05	04/29/21 22:17	5
Calcium	33		0.25	0.13	mg/L		04/28/21 14:05	04/30/21 16:13	5
Chromium	0.0011	J	0.0025	0.0010	mg/L		04/28/21 14:05	04/29/21 22:17	5
Cobalt	0.00056	U	0.0025	0.00056	mg/L		04/28/21 14:05	04/29/21 22:17	5
Lead	0.00029	U	0.0013	0.00029	mg/L		04/28/21 14:05	04/29/21 22:17	5
Lithium	0.0019	U	0.0025	0.0019	mg/L		04/28/21 14:05	04/29/21 22:17	5
Molybdenum	0.0045	U	0.010	0.0045	mg/L		04/28/21 14:05	04/29/21 22:17	5
Selenium	0.00082	U	0.0013	0.00082	mg/L		04/28/21 14:05	04/29/21 22:17	5
Thallium	0.00012	U	0.00050	0.00012	mg/L		04/28/21 14:05	04/29/21 22:17	Ę
Method: 7470A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000070	U	0.00020	0.000070	mg/L		04/29/21 11:00	04/29/21 17:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	98		5.0	5.0	mg/L			04/29/21 12:51	1
Chloride	1.4	U F1	2.0	1.4	mg/L			05/08/21 02:54	1
Fluoride	0.10	В	0.10	0.032	mg/L			05/10/21 16:37	1
Sulfate	1.8	J	5.0	1.4	mg/L			05/09/21 15:15	1
Method: Field Sampling - Fie	eld Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.91				SU			04/26/21 15:00	

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Qualifiers

Metals Qualifier	Qualifier Description
^3+	Reporting Limit Check Standard is outside acceptance limits, high biased
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.
U Gonoral C	•

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

MCL

MDA

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC	Not Calculated

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

PRES	Presumptive
QC	Quality Contro

RER Relative Error Ratio (Radiochemistry)

RL	Reporting Limit or Requested Limit (Radiochemistry)

RPD	Polativo Parcent Difference	a maggire of the relative	difference between two points
RPD	Relative Percent Difference	a measure of the relative	omerence between two boints

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 400-202647-1

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: DUP-16-20210426

Date Collected: 04/26/21 08:00 Date Received: 04/28/21 09:39

Lab Sample ID: 400-202647-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	529803	04/29/21 22:05	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	530035	04/30/21 15:54	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		25	530035	04/30/21 18:57	AS	TAL PEN
Total/NA	Prep	7470A			529577	04/29/21 11:00	NET	TAL PEN
Total/NA	Analysis	7470A		1	529808	04/29/21 17:12	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	529669	04/29/21 12:51	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	531000	05/08/21 02:48	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	531172	05/10/21 16:20	KAK	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	531034	05/09/21 15:15	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	525973	04/26/21 07:00	EHS	TAL PEN

Client Sample ID: MW-D2-20210426 Lab Sample ID: 400-202647-2

Date Collected: 04/26/21 10:45 Date Received: 04/28/21 09:39

TAL PEN

TAL PEN TAL PEN

TAL PEN

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	529803	04/29/21 22:09	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	530035	04/30/21 15:58	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		25	530035	04/30/21 19:01	AS	TAL PEN
Total/NA	Prep	7470A			529577	04/29/21 11:00	NET	TAL PEN
Total/NA	Analysis	7470A		1	529808	04/29/21 17:14	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	529669	04/29/21 12:51	VB	TAL PEN

Client Sample ID: MW-D3-20210426 Lab Sample ID: 400-202647-3 Date Collected: 04/26/21 12:10 **Matrix: Water**

1

1

1

531000 05/08/21 02:48 DN1

531172 05/10/21 16:27 KAK

531034 05/09/21 15:15 DN1

525973 04/26/21 09:45 EHS

Date Received: 04/28/21 09:39

Analysis

Analysis

Analysis

Analysis

SM 4500 CI- E

SM 4500 F C

SM 4500 SO4 E

Field Sampling

Total/NA

Total/NA

Total/NA

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			529524	04/29/21 10:32	KW	TAL PEN
Total Recoverable	Analysis	6020		5	529803	04/29/21 22:20	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/29/21 10:32	KW	TAL PEN
Total Recoverable	Analysis	6020		5	531201	05/10/21 12:45	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/29/21 10:32	KW	TAL PEN
Total Recoverable	Analysis	6020		25	531201	05/10/21 12:48	AS	TAL PEN

Eurofi

Page 14 of 26

ns	TestAmerica.	Pensacola

5/13/2021

Job ID: 400-202647-1

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: MW-D3-20210426

Date Collected: 04/26/21 12:10 Date Received: 04/28/21 09:39

Lab Sample ID: 400-202647-3 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			529577	04/29/21 11:00	NET	TAL PEN
Total/NA	Analysis	7470A		1	529808	04/29/21 17:16	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	529669	04/29/21 12:51	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	531000	05/08/21 02:48	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	531172	05/10/21 16:30	KAK	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	531034	05/09/21 15:15	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	525973	04/26/21 11:10	EHS	TAL PEN

Client Sample ID: MW-D1-20210426

Date Collected: 04/26/21 13:45 Date Received: 04/28/21 09:39

Lab Sample ID: 400-202647-4

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	529803	04/29/21 22:13	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	530035	04/30/21 16:02	AS	TAL PEN
Total/NA	Prep	7470A			529577	04/29/21 11:00	NET	TAL PEN
Total/NA	Analysis	7470A		1	529808	04/29/21 17:18	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	529669	04/29/21 12:51	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	531000	05/08/21 02:48	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	531172	05/10/21 16:34	KAK	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	531034	05/09/21 15:15	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	525973	04/26/21 12:45	EHS	TAL PEN

Client Sample ID: MW-U1-20210426

Date Collected: 04/26/21 16:00 Date Received: 04/28/21 09:39

Lab Sample ID: 400-202647-5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	529803	04/29/21 22:17	AS	TAL PEN
Total Recoverable	Prep	3005A			529524	04/28/21 14:05	KW	TAL PEN
Total Recoverable	Analysis	6020		5	530035	04/30/21 16:13	AS	TAL PEN
Total/NA	Prep	7470A			529577	04/29/21 11:00	NET	TAL PEN
Total/NA	Analysis	7470A		1	529808	04/29/21 17:20	NET	TAL PEN
Total/NA	Analysis	SM 2540C		1	529669	04/29/21 12:51	VB	TAL PEN
Total/NA	Analysis	SM 4500 CI- E		1	531000	05/08/21 02:54	DN1	TAL PEN
Total/NA	Analysis	SM 4500 F C		1	531172	05/10/21 16:37	KAK	TAL PEN
Total/NA	Analysis	SM 4500 SO4 E		1	531034	05/09/21 15:15	DN1	TAL PEN
Total/NA	Analysis	Field Sampling		1	525973	04/26/21 15:00	EHS	TAL PEN

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins TestAmerica, Pensacola

Page 15 of 26

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1 SDG: Crisp Co. Power

Metals

Prep Batch: 529524

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total Recoverable	Water	3005A	
400-202647-2	MW-D2-20210426	Total Recoverable	Water	3005A	
400-202647-3	MW-D3-20210426	Total Recoverable	Water	3005A	
400-202647-4	MW-D1-20210426	Total Recoverable	Water	3005A	
400-202647-5	MW-U1-20210426	Total Recoverable	Water	3005A	
MB 400-529524/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-529524/2-A ^5	Lab Control Sample	Total Recoverable	Water	3005A	
400-202201-E-39-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
400-202201-E-39-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 529577

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	7470A	
400-202647-2	MW-D2-20210426	Total/NA	Water	7470A	
400-202647-3	MW-D3-20210426	Total/NA	Water	7470A	
400-202647-4	MW-D1-20210426	Total/NA	Water	7470A	
400-202647-5	MW-U1-20210426	Total/NA	Water	7470A	
MB 400-529577/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-529577/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-202594-Q-2-B MS	Matrix Spike	Total/NA	Water	7470A	
400-202594-Q-2-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 529803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total Recoverable	Water	6020	529524
400-202647-2	MW-D2-20210426	Total Recoverable	Water	6020	529524
400-202647-3	MW-D3-20210426	Total Recoverable	Water	6020	529524
400-202647-4	MW-D1-20210426	Total Recoverable	Water	6020	529524
400-202647-5	MW-U1-20210426	Total Recoverable	Water	6020	529524
MB 400-529524/1-A ^5	Method Blank	Total Recoverable	Water	6020	529524
LCS 400-529524/2-A ^5	Lab Control Sample	Total Recoverable	Water	6020	529524
400-202201-E-39-B MS ^5	Matrix Spike	Total Recoverable	Water	6020	529524
400-202201-E-39-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	529524

Analysis Batch: 529808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	7470A	529577
400-202647-2	MW-D2-20210426	Total/NA	Water	7470A	529577
400-202647-3	MW-D3-20210426	Total/NA	Water	7470A	529577
400-202647-4	MW-D1-20210426	Total/NA	Water	7470A	529577
400-202647-5	MW-U1-20210426	Total/NA	Water	7470A	529577
MB 400-529577/14-A	Method Blank	Total/NA	Water	7470A	529577
LCS 400-529577/15-A	Lab Control Sample	Total/NA	Water	7470A	529577
400-202594-Q-2-B MS	Matrix Spike	Total/NA	Water	7470A	529577
400-202594-Q-2-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	529577

Analysis Batch: 530035

Lab Sample ID 400-202647-1	Client Sample ID DUP-16-20210426	Prep Type Total Recoverable	Matrix Water	Method 6020	Prep Batch 529524
400-202647-1	DUP-16-20210426	Total Recoverable	Water	6020	529524
400-202647-2	MW-D2-20210426	Total Recoverable	Water	6020	529524

Eurofins TestAmerica, Pensacola

Page 16 of 26

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1 SDG: Crisp Co. Power

Metals (Continued)

Analysis Batch: 530035 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-2	MW-D2-20210426	Total Recoverable	Water	6020	529524
400-202647-4	MW-D1-20210426	Total Recoverable	Water	6020	529524
400-202647-5	MW-U1-20210426	Total Recoverable	Water	6020	529524
MB 400-529524/1-A ^5	Method Blank	Total Recoverable	Water	6020	529524
LCS 400-529524/2-A ^5	Lab Control Sample	Total Recoverable	Water	6020	529524

Analysis Batch: 531201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-3	MW-D3-20210426	Total Recoverable	Water	6020	529524
400-202647-3	MW-D3-20210426	Total Recoverable	Water	6020	529524

General Chemistry

Analysis Batch: 529669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	SM 2540C	
400-202647-2	MW-D2-20210426	Total/NA	Water	SM 2540C	
400-202647-3	MW-D3-20210426	Total/NA	Water	SM 2540C	
400-202647-4	MW-D1-20210426	Total/NA	Water	SM 2540C	
400-202647-5	MW-U1-20210426	Total/NA	Water	SM 2540C	
MB 400-529669/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-529669/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-202594-E-3 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 531000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	SM 4500 CI- E	
400-202647-2	MW-D2-20210426	Total/NA	Water	SM 4500 CI- E	
400-202647-3	MW-D3-20210426	Total/NA	Water	SM 4500 CI- E	
400-202647-4	MW-D1-20210426	Total/NA	Water	SM 4500 CI- E	
400-202647-5	MW-U1-20210426	Total/NA	Water	SM 4500 CI- E	
MB 400-531000/16	Method Blank	Total/NA	Water	SM 4500 CI- E	
LCS 400-531000/17	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
MRL 400-531000/13	Lab Control Sample	Total/NA	Water	SM 4500 CI- E	
400-202647-5 MS	MW-U1-20210426	Total/NA	Water	SM 4500 CI- E	
400-202647-5 MSD	MW-U1-20210426	Total/NA	Water	SM 4500 CI- E	

Analysis Batch: 531034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	SM 4500 SO4 E	-
400-202647-2	MW-D2-20210426	Total/NA	Water	SM 4500 SO4 E	
400-202647-3	MW-D3-20210426	Total/NA	Water	SM 4500 SO4 E	
400-202647-4	MW-D1-20210426	Total/NA	Water	SM 4500 SO4 E	
400-202647-5	MW-U1-20210426	Total/NA	Water	SM 4500 SO4 E	
MB 400-531034/6	Method Blank	Total/NA	Water	SM 4500 SO4 E	
LCS 400-531034/7	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
MRL 400-531034/3	Lab Control Sample	Total/NA	Water	SM 4500 SO4 E	
400-202647-5 MS	MW-U1-20210426	Total/NA	Water	SM 4500 SO4 E	
400-202647-5 MSD	MW-U1-20210426	Total/NA	Water	SM 4500 SO4 E	

10

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1 SDG: Crisp Co. Power

General Chemistry

Analysis Batch: 531172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	SM 4500 F C	
400-202647-2	MW-D2-20210426	Total/NA	Water	SM 4500 F C	
400-202647-3	MW-D3-20210426	Total/NA	Water	SM 4500 F C	
400-202647-4	MW-D1-20210426	Total/NA	Water	SM 4500 F C	
400-202647-5	MW-U1-20210426	Total/NA	Water	SM 4500 F C	
MB 400-531172/3	Method Blank	Total/NA	Water	SM 4500 F C	
LCS 400-531172/6	Lab Control Sample	Total/NA	Water	SM 4500 F C	
400-202647-1 MS	DUP-16-20210426	Total/NA	Water	SM 4500 F C	
400-202647-1 MSD	DUP-16-20210426	Total/NA	Water	SM 4500 F C	

Field Service / Mobile Lab

Analysis Batch: 525973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	Field Sampling	
400-202647-2	MW-D2-20210426	Total/NA	Water	Field Sampling	
400-202647-3	MW-D3-20210426	Total/NA	Water	Field Sampling	
400-202647-4	MW-D1-20210426	Total/NA	Water	Field Sampling	
400-202647-5	MW-U1-20210426	Total/NA	Water	Field Sampling	

owei

5

4

O

0

9

10

13

4 /

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-1 SDG: Crisp Co. Power

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-529524/1-A ^5

Matrix: Water

Analysis Batch: 529803

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 529524

il Fac
5
5
5
5
5
5
5
5
5
5
5
5

Lab Sample ID: MB 400-529524/1-A ^5

Matrix: Water

Analysis Batch: 530035

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 529524

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed 04/28/21 14:05 04/30/21 15:47 Calcium 0.13 U 0.25 0.13 mg/L

Lab Sample ID: LCS 400-529524/2-A ^5

Matrix: Water

Analysis Batch: 529803

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 529524

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.0462		mg/L		92	80 - 120
Arsenic	0.0500	0.0427		mg/L		85	80 - 120
Barium	0.0500	0.0424		mg/L		85	80 - 120
Beryllium	0.0500	0.0459		mg/L		92	80 - 120
Cadmium	0.0500	0.0474		mg/L		95	80 - 120
Chromium	0.0500	0.0472		mg/L		94	80 - 120
Cobalt	0.0500	0.0462		mg/L		92	80 - 120
Lead	0.0500	0.0460		mg/L		92	80 - 120
Lithium	0.0500	0.0443		mg/L		89	80 - 120
Molybdenum	0.0500	0.0453		mg/L		91	80 - 120
Selenium	0.0500	0.0477		mg/L		95	80 - 120
Thallium	0.0100	0.00876		mg/L		88	80 - 120

Lab Sample ID: LCS 400-529524/2-A ^5

Matrix: Water

Analysis Batch: 530035

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 529524

	Spike	e LCS	LCS		%Rec.
Analyte	Added	l Result	Qualifier Unit	D %Re	c Limits
Calcium	5.00	4.77	mg/L	. 9	80 - 120

Eurofins TestAmerica, Pensacola

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-202201-E-39-B MS ^5

Matrix: Water

Analysis Batch: 529803

Client Sample ID: Matrix Spike Prep Type: Total Recoverable

Prep Batch: 529524

Samp	e Sample	Spike	MS	MS				%Rec.	
Analyte Resu	lt Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony 0.001	5 U	0.0500	0.0483		mg/L		97	75 - 125	
Arsenic 0.0003	9 U	0.0500	0.0481		mg/L		96	75 - 125	
Barium 0.08	4	0.0500	0.126		mg/L		85	75 - 125	
Beryllium 0.0001	7 U	0.0500	0.0494		mg/L		99	75 - 125	
Cadmium 0.0002	8 U	0.0500	0.0490		mg/L		98	75 - 125	
Chromium 0.002	2 J	0.0500	0.0508		mg/L		97	75 - 125	
Cobalt 0.0009	7 J	0.0500	0.0489		mg/L		96	75 - 125	
Lead 0.0002	9 U	0.0500	0.0477		mg/L		95	75 - 125	
Lithium 0.001	9 U	0.0500	0.0466		mg/L		93	75 - 125	
Molybdenum 0.004	5 U	0.0500	0.0476		mg/L		95	75 - 125	
Selenium 0.001	5	0.0500	0.0515		mg/L		100	75 - 125	
Thallium 0.0001	2 U	0.0100	0.00908		mg/L		91	75 - 125	

Lab Sample ID: 400-202201-E-39-C MSD ^5

Matrix: Water

Analysis Batch: 529803

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Prep Batch: 529524

Sample Sample Spike MSD MSD %Rec. **RPD** RPD Result Qualifier Added Limits Limit **Analyte** Result Qualifier Unit %Rec Antimony 0.0015 U 0.0500 0.0479 mg/L 96 75 - 125 20 Arsenic 0.00039 U 0.0500 0.0486 97 75 - 125 20 mg/L Barium 0.084 0.0500 0.126 mg/L 85 75 - 125 20 Beryllium 0.00017 U 0.0500 0.0474 95 75 - 125 20 mg/L Cadmium 0.00028 U 0.0500 0.0481 mg/L 96 75 - 125 20 Chromium 0.0022 J 0.0500 0.0505 mg/L 97 75 - 125 20 0.0500 75 - 125 20 Cobalt 0.00097 J 0.0475 mg/L 93 Lead 0.00029 U 0.0500 20 0.0471 mg/L 94 75 - 125 91 Lithium 0.0019 U 0.0500 0.0454 mg/L 75 - 125 20 Molybdenum 0.0045 U 0.0500 0.0473 mg/L 95 75 - 125 20 Selenium 0.0015 0.0500 0.0517 mg/L 100 75 - 125 n 20

0.00911

MDL Unit

0.000070 mg/L

mg/L

Unit

mg/L

0.0100

0.00101

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-529577/14-A

Matrix: Water

Thallium

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 529808

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

75 - 125

91

Prepared

Prep Batch: 529577

20

Dil Fac

Lab Sample ID: LCS 400-529577/15-A

Matrix: Water

Analysis Batch: 529808

0.00012 U

MB MB

0.000070 U

Result Qualifier

Spike LCS LCS Added Result Qualifier

0.000938

RL

0.00020

%Rec

Prep Type: Total/NA Prep Batch: 529577 %Rec.

Limits 80 - 120

04/29/21 11:00 04/29/21 16:44

Client Sample ID: Lab Control Sample

Eurofins TestAmerica, Pensacola

Job ID: 400-202647-1

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

SDG: Crisp Co. Power

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 400-202594-Q-2-B MS Client Sample ID: Matrix Spike

Matrix: Water

Analysis Batch: 529808 Sample Sample Spike MS MS

Prep Type: Total/NA Prep Batch: 529577

%Rec. Result Qualifier Result Qualifier Added Limits Analyte Unit %Rec 0.00201 Mercury 0.000070 U 0.00168 mg/L 83 80 - 120

Lab Sample ID: 400-202594-Q-2-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 529808

Prep Type: Total/NA **Prep Batch: 529577**

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 0.000070 U 0.00201 80 - 120 Mercury 0.00167 mg/L 83 n 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-529669/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529669

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 5.0 04/29/21 12:51 **Total Dissolved Solids** 5.0 U 5.0 mg/L

Lab Sample ID: LCS 400-529669/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 529669

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 293 302 103 78 - 122 mg/L

Lab Sample ID: 400-202594-E-3 DU

Matrix: Water

Analysis Batch: 529669

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 400 mg/L

Method: SM 4500 Cl- E - Chloride, Total

Lab Sample ID: MB 400-531000/16 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531000

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 2.0 1.4 mg/L 05/08/21 02:45

Lab Sample ID: LCS 400-531000/17 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 531000

LCS LCS Spike %Rec. Added Limits Analyte Result Qualifier Unit %Rec Chloride 30.0 27.5 92 mg/L 90 - 110

Eurofins TestAmerica, Pensacola

Client Sample ID: Duplicate

Prep Type: Total/NA

Job ID: 400-202647-1

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

SDG: Crisp Co. Power

Method: SM 4500 CI- E - Chloride, Total (Continued)

Lab Sample ID: MRL 400-531000/13 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531000 Spike MRL MRL

%Rec. Added Result Qualifier Limits Analyte Unit D %Rec 50 - 150 Chloride 2.00 2.00 mg/L 100

Lab Sample ID: 400-202647-5 MS Client Sample ID: MW-U1-20210426 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531000

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit 1.4 U F1 10.0 Chloride 13.7 F1 mg/L 137 73 - 120

Lab Sample ID: 400-202647-5 MSD Client Sample ID: MW-U1-20210426 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531000

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Limits RPD Unit %Rec Limit Chloride 1.4 U F1 10.0 13.8 F1 138 73 - 120 8 mg/L

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 400-531172/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531172

MB MB **Analyte** Result Qualifier RL MDL Unit Prepared

Analyzed Dil Fac Fluoride 0.0600 J 0.10 0.032 mg/L 05/10/21 16:11

Lab Sample ID: LCS 400-531172/6 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 531172

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Fluoride 5.00 4.72 mg/L 90 - 110

Lab Sample ID: 400-202647-1 MS Client Sample ID: DUP-16-20210426 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531172

MS MS Sample Sample Spike %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Fluoride 0.22 B 1.00 1.29 107 75 - 125 mg/L

Client Sample ID: DUP-16-20210426 Lab Sample ID: 400-202647-1 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531172

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Fluoride 0.22 B 1.00 1.29 mg/L

Eurofins TestAmerica, Pensacola

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

SDG: Crisp Co. Power

Client Sample ID: Method Blank

Job ID: 400-202647-1

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 4500 SO4 E - Sulfate, Total

Lab Sample ID: MB 400-531034/6

Matrix: Water

Analysis Batch: 531034

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Sulfate 5.0 1.4 mg/L 05/09/21 15:04 1.4 U

Lab Sample ID: LCS 400-531034/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531034

Spike LCS LCS %Rec. Analyte Added Result Qualifier D %Rec Limits Unit Sulfate 15.0 16.0 90 - 110 mg/L 106

Lab Sample ID: MRL 400-531034/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531034

Spike MRL MRL %Rec. Added Result Qualifier Limits Analyte Unit %Rec Sulfate 5.00 4.98 J 100 50 - 150 mg/L

Lab Sample ID: 400-202647-5 MS Client Sample ID: MW-U1-20210426 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 531034

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Sulfate 1.8 J 10.0 12.4 mg/L 105 77 - 128

Client Sample ID: MW-U1-20210426 Lab Sample ID: 400-202647-5 MSD

Matrix: Water

Analysis Batch: 531034

MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added %Rec Limits Result Qualifier Unit Limit Sulfate 1.8 J 10.0 12.4 106 77 - 128 mg/L 0

9999

SHIPPING: SPECIAL: HANDLING: TOTAL:

Date: 20Apr21 Wgt: 10.00 LBS

0.00

Months

e assessed if samples are retained longer than 1 month)

Archive For

2226 0.2°C1R9

Client Information	Sampler W. Rays	W. Razz		Lab PM		1			Carrier Tracking No(s)	No(s)
Carell Contact Dawit Yifru	Phone 200	1011		Mari	neyenn	2				
Company Geosyntec Consultants, Inc.	076 - 01 - 1	3	7	cheyenne whitmire@testamericainc.com	Autmire(@lestam	ericaino	moo	1482-3808-3	1808-3
Address 1255 Roberts Blvd, NW Suite 200	Due Date Requested:			100	E	1	Analys	is Re	Analysis Receipted	
City.	TAT Requested (dane).									
Nein rosaw State, Zip O'S and State		÷				O				
Phone.	١.	STANDARD			EbC	n'əs 'ı				
678-202-9500	PO#. Purchase Order not required	ot required		1	578°G	IT,d9,				
dyfru@geosyntec.com	WO#				ZeH=2	'Co'rı				
Project Name CCR App.liulV GW Monitoring	Project #			Yes or No	6, Ra2	10,bO.	spijo			
CRISP Co. POWER.	SSOW#			ejdur	200	,BO,98,		_	Hq bis	
		Sam	Sample Matrix	B benefit	SS6, 9320	18,8,8A,0	eelO leto) - Fluoria	ug - Swyd	
Sample Identification	Sample Date	Sample (Cacomp,	"Type (www.nec, 3-sold oversimed." ==grab) ST-THERM (A-AM)	Field Fi		-			mebia	
	V	釰	-2190	-	-12	-80	Z	-8	3	
DUP-16-20210426	4/26/21 0	0800	Water	12 12	3			2		
MW-02-20210426			+	1 3		-	-			
MW-03-2021042	-	-	Water	E	3	-	1			+
MW-DI-20210426	+		+		3					+
92401202 - IN -MW	-		Water			4	-	-		+
			Meter		H	П	\parallel	\prod		
				-	1	Ľ	#	+		
			145	1	H	\$	#	1	+	
		1	1	E			1	F		-
					-	1	ļ	Ŧ		
,				H	+		1	I	+	
Non-Hazard Identification				San	nple Dis	posal (A fee m	By be a:	sessed if sa	- day
Other (specify)	son B Unknown.	7. Radiological	gical	4	Retur	n To Ch	ant	R	Return To Client Disposal By Lab	
Emply Kil Belinmished hu	Ħ			Spe	cial Inst	ructions	Special Instructions/QC Requirements:	uiremen	.S.	
andraising by.	Date	ite:		Time	1	Ref:	Ref: S400-102430	2430	ć	Į
Removated by Kandall	4 27 21	1600	Company		Receive	ed ed			Mgt:	Wgt: 10.00 Las
	Date/Time		Company	_	Receive				DV:	
Custody Seals Infanct: Custody Seal No	Date Time 8/1	98p	Company		Receive	SVDS: F	RIORITY	OVERNIG	SVDS: PRIORITY OVERNIGHT Master 1482 3808 3860 TRCK: 1482 3808 3060	2 3808 3860
Δ Yes Δ No					Cooler Te	mperature	Cooler Temperature(s) "C and Uther hericens	Ulner ne	lidthe	nggs angs.
7000	18.0			1						

N - None
O - ANNAOZ
P - NAZOAS
Q - NAZSO3
R - NAZSO3
S - HZSO4
T - TSP Dodecahydrate
U - Acertone
U - Acertone
W - MCAA
W - PH 4.5
Z - other (specify)

A - HCL B - NaOH C: Zn Acesses D - Naric Acid E - NaHSOA F - NaCHOI F - MeOH I - Ice J - DI Water K - EDTA L - EDA

Special Instructions/Note:

Total Number of containers

PH - 7.02

PH - C. 82 PH- 7.91

PH - 7.03 PH - 4.87

Environment Testing forthment

s's eurofins

Chain of Custody Record

Eurofins TestAmerica, Pensacola

3355 McLemore Drive

Pensacola, FL 32514 Phone: 850-474-1001 Fax: 850-478-2671

COC No 400-93295-29334.1

1482-3808-3800 Page 1 of 1

reservation Codes:

Client: Geosyntec Consultants, Inc.

Job Number: 400-202647-1 SDG Number: Crisp Co. Power

Login Number: 202647 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Whitley, Adrian

orcator. Williacy, Adrian		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.2, 22.6°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-1 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-21
ANAB	ISO/IEC 17025	L2471	02-23-23
Arizona	State	AZ0710	01-12-22
Arkansas DEQ	State	88-0689	09-02-21
California	State	2510	06-30-21
Florida	NELAP	E81010	06-30-21
Georgia	State	E81010(FL)	06-30-21
Illinois	NELAP	200041	10-09-21
lowa	State	367	08-01-22
Kansas	NELAP	E-10253	10-31-21
Kentucky (UST)	State	53	06-30-21
Kentucky (WW)	State	KY98030	12-31-21
Louisiana	NELAP	30976	06-30-21
Louisiana (DW)	State	LA017	12-31-21
Maryland	State	233	09-30-21
Massachusetts	State	M-FL094	06-30-21
Michigan	State	9912	06-30-21
New Jersey	NELAP	FL006	06-30-21
North Carolina (WW/SW)	State	314	12-31-21
Oklahoma	State	9810	08-31-21
Pennsylvania	NELAP	68-00467	01-31-22
Rhode Island	State	LAO00307	12-30-21
South Carolina	State	96026002	06-30-21
Tennessee	State	TN02907	06-30-21
Texas	NELAP	T104704286	09-30-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-21-00056	05-17-21
Virginia	NELAP	460166	06-14-21
Washington	State	C915	05-15-21
West Virginia DEP	State	136	06-30-21

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

Laboratory Job ID: 400-202647-2

Laboratory Sample Delivery Group: Crisp Co. Power Client Project/Site: CCR App.III/IV GW Monitoring

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Dawit Yifru

Cheyrnaxwhitmir

Authorized for release by: 6/4/2021 9:42:50 AM

Cheyenne Whitmire, Project Manager II (850)471-6222

Cheyenne.Whitmire@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

7

10

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	11
Chronicle	12
QC Association	14
QC Sample Results	15
Chain of Custody	17
Receipt Checklists	18
Certification Summary	20

4

5

0

8

10

10

13

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Job ID: 400-202647-2

Laboratory: Eurofins TestAmerica, Pensacola

Narrative

Job Narrative 400-202647-2

RAD

Method 9315: Radium-226 Batch 160-509356. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DUP-16-20210426 (400-202647-1), MW-D2-20210426 (400-202647-2), MW-D3-20210426 (400-202647-3), MW-D1-20210426 (400-202647-4), MW-U1-20210426 (400-202647-5), (LCS 160-509356/1-A), (MB 160-509356/24-A), (280-147998-A-2-E) and (280-147998-M-2-B DU)

Method 9320: Radium-228 Batch 160-509365. Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DUP-16-20210426 (400-202647-1), MW-D2-20210426 (400-202647-2), MW-D3-20210426 (400-202647-3), MW-D1-20210426 (400-202647-4), MW-U1-20210426 (400-202647-5), (LCS 160-509365/1-A), (MB 160-509365/24-A), (280-147998-A-2-F) and (280-147998-M-2-C DU)

Job ID: 400-202647-2

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Method Description

Radium-226 (GFPC)

Radium-228 (GFPC)

Combined Radium-226 and Radium-228

Preparation, Precipitate Separation

Job ID: 400-202647-2

SDG: Crisp Co. Power

Protocol	Laboratory
SW846	TAL SL
SW846	TAL SL
TAL-STL	TAL SL

TAL SL

TAL SL

None

None

Protocol References:

None = None

Method

Ra226_Ra228

PrecSep_0

PrecSep-21

9315

9320

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Preparation, Precipitate Separation (21-Day In-Growth)

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

6/4/2021

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-2

SDG: Crisp Co. Power

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-202647-1	DUP-16-20210426	Water	04/26/21 08:00	04/28/21 09:39
400-202647-2	MW-D2-20210426	Water	04/26/21 10:45	04/28/21 09:39
400-202647-3	MW-D3-20210426	Water	04/26/21 12:10	04/28/21 09:39
400-202647-4	MW-D1-20210426	Water	04/26/21 13:45	04/28/21 09:39
400-202647-5	MW-U1-20210426	Water	04/26/21 16:00	04/28/21 09:39

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Carrier

Ba Carrier

Y Carrier

Job ID: 400-202647-2 SDG: Crisp Co. Power

Prepared

05/12/21 14:38 06/01/21 12:59

05/12/21 14:38 06/01/21 12:59

Analyzed

Client Sample ID: DUP-16-20210426

%Yield Qualifier

68.2

87.5

Lab Sample ID: 400-202647-1 Date Collected: 04/26/21 08:00 **Matrix: Water** Date Received: 04/28/21 09:39

Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.303		0.194	0.196	1.00	0.263	pCi/L	05/12/21 13:58	06/03/21 07:37	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	68.2		40 - 110					05/12/21 13:58	06/03/21 07:37	1
- Method: 9320 - F	Radium-228 ((GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac

Method: Ra226_Ra2	228 - Com	ibined Rad	dium-226 a	nd Radium	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.395	U	0.395	0.396	5.00	0.597	pCi/L		06/03/21 21:24	1

Limits

40 - 110

40 - 110

6/4/2021

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring Job ID: 400-202647-2

SDG: Crisp Co. Power

Client Sample ID: MW-D2-20210426

Date Collected: 04/26/21 10:45 Date Received: 04/28/21 09:39 Lab Sample ID: 400-202647-2

Matrix: Water

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.255		0.162	0.163	1.00	0.207	pCi/L	05/12/21 13:58	06/03/21 07:37	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	71.8		40 - 110					05/12/21 13:58	06/03/21 07:37	

Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.518		0.295	0.299	1.00	0.440	pCi/L	05/12/21 14:38	06/01/21 12:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	71.8		40 - 110					05/12/21 14:38	06/01/21 12:59	1
Y Carrier	89.7		40 - 110					05/12/21 14:38	06/01/21 12:59	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.773		0.337	0.341	5.00	0.440	pCi/L		06/03/21 21:24	1

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-2 SDG: Crisp Co. Power

Lab Sample ID: 400-202647-3

Matrix: Water

Client Sample ID: MW-D3-20210426

Date Collected: 04/26/21 12:10 Date Received: 04/28/21 09:39

		GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0920	U	0.122	0.122	1.00	0.203	pCi/L	05/12/21 13:58	06/03/21 07:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	73.3		40 - 110					05/12/21 13:58	06/03/21 07:38	1

Method: 9320 - I	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.260	U	0.291	0.292	1.00	0.478	pCi/L	05/12/21 14:38	06/01/21 13:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	73.3		40 - 110					05/12/21 14:38	06/01/21 13:00	1
Y Carrier	93.1		40 - 110					05/12/21 14:38	06/01/21 13:00	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.352	U	0.316	0.316	5.00	0.478	pCi/L		06/03/21 21:24	1

6/4/2021

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-2 SDG: Crisp Co. Power

Client Sample ID: MW-D1-20210426 Lab Sa

Lab Sample ID: 400-202647-4

Matrix: Water

Date Collected: 04/26/21 13:45 Date Received: 04/28/21 09:39

Method: 9315 - R	adium-226	(GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.00177	U	0.112	0.112	1.00	0.238	pCi/L	05/12/21 13:58	06/03/21 07:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	63.7		40 - 110					05/12/21 13:58	06/03/21 07:38	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0312	U	0.286	0.286	1.00	0.524	pCi/L	05/12/21 14:38	06/01/21 13:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	63.7		40 - 110					05/12/21 14:38	06/01/21 13:00	1
Y Carrier	89.3		40 - 110					05/12/21 14:38	06/01/21 13:00	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0330	U	0.307	0.307	5.00	0.524	pCi/L		06/03/21 21:24	1

6/4/2021

Client Sample Results

Client: Geosyntec Consultants, Inc.

Carrier

Ba Carrier

Y Carrier

Job ID: 400-202647-2 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: MW-U1-20210426

%Yield Qualifier

79.6

85.6

Limits

40 - 110

40 - 110

Lab Sample ID: 400-202647-5 Date Collected: 04/26/21 16:00 **Matrix: Water** Date Received: 04/28/21 09:39

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.172	U	0.145	0.146	1.00	0.218	pCi/L	05/12/21 13:58	06/03/21 07:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	79.6		40 - 110					05/12/21 13:58	06/03/21 07:40	1
- Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Analyte	ixcount	audiii.o.	(=0 -,)	(')					·	

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.609		0.327	0.329	5.00	0.451	pCi/L		06/03/21 21:24	1

6/4/2021

Prepared

05/12/21 14:38 06/01/21 13:01

05/12/21 14:38 06/01/21 13:01

Analyzed

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-2 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Qualifiers

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-2 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: DUP-16-20210426

Lab Sample ID: 400-202647-1 Date Collected: 04/26/21 08:00 **Matrix: Water** Date Received: 04/28/21 09:39

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			509356	05/12/21 13:58	LAR	TAL SL
Total/NA	Analysis	9315		1	512655	06/03/21 07:37	SCB	TAL SL
Total/NA	Prep	PrecSep_0			509365	05/12/21 14:38	LAR	TAL SL
Total/NA	Analysis	9320		1	512417	06/01/21 12:59	AK	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	512663	06/03/21 21:24	GRW	TAL SL

Lab Sample ID: 400-202647-2 Client Sample ID: MW-D2-20210426

Date Collected: 04/26/21 10:45 **Matrix: Water** Date Received: 04/28/21 09:39

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			509356	05/12/21 13:58	LAR	TAL SL
Total/NA	Analysis	9315		1	512655	06/03/21 07:37	SCB	TAL SL
Total/NA	Prep	PrecSep_0			509365	05/12/21 14:38	LAR	TAL SL
Total/NA	Analysis	9320		1	512417	06/01/21 12:59	AK	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	512663	06/03/21 21:24	GRW	TAL SL

Lab Sample ID: 400-202647-3 Client Sample ID: MW-D3-20210426

Date Collected: 04/26/21 12:10 **Matrix: Water** Date Received: 04/28/21 09:39

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			509356	05/12/21 13:58	LAR	TAL SL
Total/NA	Analysis	9315		1	512655	06/03/21 07:38	SCB	TAL SL
Total/NA	Prep	PrecSep_0			509365	05/12/21 14:38	LAR	TAL SL
Total/NA	Analysis	9320		1	512417	06/01/21 13:00	AK	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	512663	06/03/21 21:24	GRW	TAL SL

Client Sample ID: MW-D1-20210426 Lab Sample ID: 400-202647-4

Date Collected: 04/26/21 13:45 **Matrix: Water** Date Received: 04/28/21 09:39

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			509356	05/12/21 13:58	LAR	TAL SL
Total/NA	Analysis	9315		1	512655	06/03/21 07:38	SCB	TAL SL
Total/NA	Prep	PrecSep_0			509365	05/12/21 14:38	LAR	TAL SL
Total/NA	Analysis	9320		1	512417	06/01/21 13:00	AK	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	512663	06/03/21 21:24	GRW	TAL SL

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Date Received: 04/28/21 09:39

Job ID: 400-202647-2 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Client Sample ID: MW-U1-20210426 Lab Sample ID: 400-202647-5 Date Collected: 04/26/21 16:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			509356	05/12/21 13:58	LAR	TAL SL
Total/NA	Analysis	9315		1	512600	06/03/21 07:40	SCB	TAL SL
Total/NA	Prep	PrecSep_0			509365	05/12/21 14:38	LAR	TAL SL
Total/NA	Analysis	9320		1	512417	06/01/21 13:01	AK	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	512663	06/03/21 21:24	GRW	TAL SL

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-2 SDG: Crisp Co. Power

Prep Batch: 509356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	PrecSep-21	
400-202647-2	MW-D2-20210426	Total/NA	Water	PrecSep-21	
400-202647-3	MW-D3-20210426	Total/NA	Water	PrecSep-21	
400-202647-4	MW-D1-20210426	Total/NA	Water	PrecSep-21	
400-202647-5	MW-U1-20210426	Total/NA	Water	PrecSep-21	
MB 160-509356/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-509356/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
280-147998-M-2-B DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 509365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-202647-1	DUP-16-20210426	Total/NA	Water	PrecSep_0	
400-202647-2	MW-D2-20210426	Total/NA	Water	PrecSep_0	
400-202647-3	MW-D3-20210426	Total/NA	Water	PrecSep_0	
400-202647-4	MW-D1-20210426	Total/NA	Water	PrecSep_0	
400-202647-5	MW-U1-20210426	Total/NA	Water	PrecSep_0	
MB 160-509365/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-509365/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
280-147998-M-2-C DU	Duplicate	Total/NA	Water	PrecSep 0	

Job ID: 400-202647-2

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

SDG: Crisp Co. Power

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-509356/24-A

Matrix: Water

Matrix: Water

Analysis Batch: 512655

Analysis Batch: 512601

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 509356

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.09182 U 0.126 0.126 1.00 0.213 pCi/L 05/12/21 13:58 06/03/21 07:43

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 76.9 40 - 110 05/12/21 13:58 06/03/21 07:43

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 509356

Total LCS LCS %Rec. **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 12.11 1.38 1.00 0.215 pCi/L 107 75 - 125

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 80.5 40 - 110

Lab Sample ID: LCS 160-509356/1-A

Lab Sample ID: 280-147998-M-2-B DU

Matrix: Water

Analysis Batch: 512655

Client Sample ID: Duplicate

Prep Type: Total/NA Prep Batch: 509356

Total

DU DU **RER** Sample Sample Uncert. Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit 0.380 Radium-226 0.5260 0.286 1.00 0.364 pCi/L 0.28

DU DU %Yield Qualifier

Carrier Limits Ba Carrier 72.4 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-509365/24-A

Matrix: Water

Analysis Batch: 512418

Client Sample ID: Method Blank

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 Ū 0.240 0.240 1.00 0.465 pCi/L 05/12/21 14:38 06/01/21 13:19 -0.1657

Total

Count

MB MB

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 76.9 40 - 110 05/12/21 14:38 06/01/21 13:19 40 - 110 Y Carrier 87.1 05/12/21 14:38 06/01/21 13:19

10

QC Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: CCR App.III/IV GW Monitoring

Job ID: 400-202647-2 SDG: Crisp Co. Power

Method: 9320 - Radium-228 (GFPC) (Continued)

40 - 110

Lab Sample ID: LCS 160-509365/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 512417** Prep Batch: 509365

Total LCS LCS %Rec. Spike Uncert. %Rec Added RL**MDC** Unit Limits

Analyte Result Qual $(2\sigma + / -)$ Radium-228 9.67 8.961 1.10 1.00 0.434 pCi/L 93 75 - 125 LCS LCS %Yield Qualifier Carrier Limits Ba Carrier 80.5 40 - 110

Lab Sample ID: 280-147998-M-2-C DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 512417 **Prep Batch: 509365**

Total Sample Sample DU DU Uncert. **RER**

Limit Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Result Qual Radium-228 1.00 0.595 pCi/L 0.06 3.23 3.147 0.655

DU DU Carrier %Yield Qualifier Limits Ba Carrier 72.4 40 - 110 40 - 110 Y Carrier 86.4

89.0

Y Carrier

10

8

P · Ne2C45 Q · Ne2S03 R · Ne2S03 S · H2S04 T · TS POOCCEAPydrate U · Acetone V · MCAA W · pH · Specify) Special Instructions/Note: other (specify) 0.000 Ver 01/16/2019 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return To Client Disposal By Lab Archive For Mont P4-7.03 PH - 7.02 PH-6.87 PH- 6.82 COC No 400-93295-29334 1 P4-7.91 Preservation Codes: A - HCL
B - NaCH
C - Zn Acetate
C - Nitric Acid
E - NaHSCA
F - MacOH
G - Amethor
H - Ascorbic Acid SHIPPING: SPECIAL: HANDLING: TOTAL: Page 1 of 1 Job # I - Ice J - Di Water K - EDIA L - EDA Archive For 0.00 Total Number of containers Cheyenne whitmire@testamericainc.com | 1482-3808-3871 400-202647 COC Date: 20Apr21 Wgt: 10.00 LBS Carrier Tracking Norst SVGS: PRIORITY OVERNIGHT Master 1482 3808 3860 TRCK: 1482 3808 3871 Analysis Requirested 2 Rectum To Client Publispo Ø B 000 B B Ø Ø Ø Ref: S400-102430 Dep: đ B Ø Ø Ø Ø Ø 702 B D 8 Ø Lab PM Whitmire, Cheyenne R E-Mail Ø Ø ď Ø 8 7 7 7 Z Z マス 2 Company G-GOSYATER Permater, 3-solls, Onwasteroff, Matrix Water Water Water Water Water STEPHEN W. RANDALL 478-328-6181 Radiological G=grab) Sample (C=comb, Type B Φ d STANDARD B 2021 Purchase Order not required wo # Sample 4/26/21 0800 9/26/21 1210 4/26/21 1345 4/26/21 loys 16.00 Date/Time U/28 TAT Requested (days): Poison B Unknown. Due Date Requested: Sample Date Date/Time 4126/21 Project # 40007960 SSOW# LEVEL II Cyclinder win 1+0 Skin Imtant eliverable Requested: I, II, III, IV. Other (specify) Mw. DI-202/0426 MW-41-20210424 dieta W. Penlass MW-03-20210426 CRISP Co. POWER MW-02-20210424 Custody Seal No 478-202-9500 DuP-16-202/0426 1255 Roberts Bivd, NW Suite 200 Flammable Possible Hazard Identification CCR App.IIIIV GW Monitoring Company Geosyntec Consultants, Inc Empty Kit Relinquished by. Client Information Client Contact Dawit Yifru dyifru@geosyntec.com Custody Seals Intact: Sample Identification A Yes A No Non-Hazard Reimquished by State, Zip GA, 30144 Kennesaw Phone

· · eurofins

Chain of Custody Record

681-Atlanta

Eurofins TestAmerica, Pensacola

3355 McLemore Drive

Pensacola, FL 32514 Phone: 850-474-1001 Fax: 850-478-2671

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 400-202647-2 SDG Number: Crisp Co. Power

Login Number: 202647 List Source: Eurofins TestAmerica, Pensacola

List Number: 1

Creator: Whitley, Adrian

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.2, 22.6°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 400-202647-2 SDG Number: Crisp Co. Power

Login Number: 202647 List Source: Eurofins TestAmerica, St. Louis List Number: 2

List Creation: 04/29/21 04:52 PM

Creator: Mazariegos, Leonel A

Grouter: Mazariogos, 20010174		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Job ID: 400-202647-2 Project/Site: CCR App.III/IV GW Monitoring SDG: Crisp Co. Power

Laboratory: Eurofins TestAmerica, St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-22
ANAB	Dept. of Defense ELAP	L2305	04-06-22
ANAB	Dept. of Energy	L2305.01	04-06-22
ANAB	ISO/IEC 17025	L2305	04-06-22
Arizona	State	AZ0813	12-08-21
California	Los Angeles County Sanitation Districts	10259	06-30-21
California	State	2886	06-30-21
Connecticut	State	PH-0241	03-31-21 *
Florida	NELAP	E87689	06-30-21
HI - RadChem Recognition	State	n/a	06-30-21
Illinois	NELAP	004553	11-30-21
lowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-21
Kentucky (DW)	State	KY90125	01-01-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-21
Louisiana	NELAP	04080	06-30-21
Louisiana (DW)	State	LA011	12-31-21
Maryland	State	310	09-30-21
MI - RadChem Recognition	State	9005	06-30-21
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-21
New Jersey	NELAP	MO002	06-30-21
New York	NELAP	11616	04-01-22
North Dakota	State	R-207	06-30-21
NRC	NRC	24-24817-01	12-31-22
Oklahoma	State	9997	08-31-21
Oregon	NELAP	4157	09-01-21
Pennsylvania	NELAP	68-00540	03-01-22
South Carolina	State	85002001	06-30-21
Texas	NELAP	T104704193	07-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542019-11	07-31-21
Virginia	NELAP	10310	06-14-21
Washington	State	C592	08-30-21
West Virginia DEP	State	381	10-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pensacola

APPENDIX C

Statistical Calculations and Time-series Graphs

Constituent: Antimony Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 48 ND/Trace = 48 Wells = 4 Minimum Value = 0.0005 Maximum Value = 0.0025 Mean Value = 0.002333 Median Value = 0.0025 Standard Deviation = 0.0005586 Coefficient of Variation = 0.2394 Skewness = -3.015

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	12	12	0.0005	0.0025	0.002333	0.0025	0.0005774	0.2474	-3.015
MW-D2	12	12	0.0005	0.0025	0.002333	0.0025	0.0005774	0.2474	-3.015
MW-D3	12	12	0.0005	0.0025	0.002333	0.0025	0.0005774	0.2474	-3.015
MW-U1 (bg)	12	12	0.0005	0.0025	0.002333	0.0025	0.0005774	0.2474	-3.015

Constituent: Antimony (mg/L) Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0025 (^*)	<0.0025 (F1)	<0.0025 (^*)	<0.0025 (^*)
3/27/2017	<0.0025	<0.0025	<0.0025	<0.0025
4/24/2017	<0.0025	<0.0025	<0.0025	<0.0025
5/22/2017	<0.0025	<0.0025	<0.0025	<0.0025
6/19/2017	<0.0025	<0.0025	<0.0025	<0.0025
7/17/2017	<0.0025	<0.0025	<0.0025	<0.0025
8/14/2017	<0.0025	<0.0025	<0.0025	<0.0025
9/13/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.0025	<0.0025	<0.0025	<0.0025
4/27/2020	<0.0005 (^)	<0.0005 (^)	<0.0005	<0.0005 (^)
4/26/2021	<0.0025	<0.0025	<0.0025	<0.0025

Constituent: Arsenic Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 44 Wells = 4 Minimum Value = 0.00015 Maximum Value = 0.0016 Mean Value = 0.00112 Median Value = 0.0013 Standard Deviation = 0.0003364 Coefficient of Variation = 0.3003 Skewness = -1.436

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	16	0.00025	0.0013	0.001234	0.0013	0.0002625	0.2127	-3.615
MW-D2	16	12	0.00027	0.0013	0.001133	0.0013	0.0003298	0.291	-1.728
MW-D3	16	2	0.00048	0.0016	0.0009369	0.000945	0.0003545	0.3784	0.3735
MW-U1 (bg)	16	14	0.00015	0.0013	0.001176	0.0013	0.0003445	0.2931	-2.388

Constituent: Arsenic (mg/L) Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013	<0.0013	0.0015	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	0.00083 (J)	0.00052 (J)	<0.0013
5/22/2017	<0.0013	0.00048 (J)	0.00092 (J)	<0.0013
6/19/2017	<0.0013	<0.0013	0.00097 (J)	<0.0013
7/17/2017	<0.0013	0.00095 (J)	0.0016	0.00046 (J)
8/14/2017	<0.0013	<0.0013	0.00048 (J)	<0.0013
9/13/2017	<0.0013	<0.0013	0.00079 (J)	<0.0013
3/22/2018	<0.0013	<0.0013	0.0006 (J)	<0.0013
6/5/2018	<0.0013	<0.0013	0.00067 (J)	<0.0013
11/29/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	0.00048 (J)	<0.0013
10/23/2019	<0.0013	<0.0013	0.00076 (J)	<0.0013
4/27/2020	<0.00025 (^)	0.00027 (B)	0.001 (B)	0.00015 (JB)
11/19/2020	<0.0013	<0.0013	0.0011 (J)	<0.0013
4/26/2021	<0.0013	<0.0013	0.001 (J)	<0.0013

Constituent: Barium Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 0 Wells = 4 Minimum Value = 0.0018 Maximum Value = 0.23 Mean Value = 0.07871 Median Value = 0.044 Standard Deviation = 0.07704 Coefficient of Variation = 0.9788 Skewness = 0.3965

<u>Mean</u> <u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
0.01402 0.0125	0.005012	0.3576	1.553
0.1392 0.14	0.02422	0.174	-0.2202
0.1591 0.17	0.05343	0.3358	-0.4172
0.0025 0.0022	0.001058	0.4231	2.919
	0.1392 0.14 0.1591 0.17	0.01402 0.0125 0.005012 0.1392 0.14 0.02422 0.1591 0.17 0.05343	0.01402 0.0125 0.005012 0.3576 0.1392 0.14 0.02422 0.174 0.1591 0.17 0.05343 0.3358

Constituent: Barium (mg/L) Analysis Run 6/22/2021 11:33 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.011	0.087	0.22	0.0034
3/27/2017	0.0099	0.11	0.23	0.0026
4/24/2017	0.011	0.15	0.2	0.0022 (J)
5/22/2017	0.013	0.12	0.21	0.002 (J)
6/19/2017	0.012	0.11	0.21	0.0021 (J)
7/17/2017	0.012	0.16	0.2	0.0025
8/14/2017	0.014	0.13	0.18	0.002 (J)
9/13/2017	0.014	0.14	0.18	0.0023 (J)
3/22/2018	0.0095	0.15	0.16	0.0021 (J)
6/5/2018	0.01	0.19	0.15	0.0025
11/29/2018	0.0099	0.15	0.14	0.0018 (J)
4/29/2019	0.015	0.16	0.1	0.0018 (J)
10/23/2019	0.027	0.14	0.13	0.0022 (J)
4/27/2020	0.015	0.15	0.091	0.0022
11/19/2020	0.024	0.14	0.084	0.0062
4/26/2021	0.017	0.14	0.061	0.0021 (J)

Constituent: Beryllium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 48 ND/Trace = 48 Wells = 4 Minimum Value = 0.0004 Maximum Value = 0.0025 Mean Value = 0.001908 Median Value = 0.002 Standard Deviation = 0.0004802 Coefficient of Variation = 0.2516 Skewness = -2.499

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	12	12	0.0004	0.0025	0.001908	0.002	0.0004963	0.2601	-2.499
MW-D2	12	12	0.0004	0.0025	0.001908	0.002	0.0004963	0.2601	-2.499
MW-D3	12	12	0.0004	0.0025	0.001908	0.002	0.0004963	0.2601	-2.499
MW-U1 (bg)	12	12	0.0004	0.0025	0.001908	0.002	0.0004963	0.2601	-2.499

Constituent: Beryllium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

		MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2	2/28/2017	<0.002	<0.002	<0.002	<0.002
;	3/27/2017	<0.002	<0.002	<0.002	<0.002
4	4/24/2017	<0.002	<0.002	<0.002	<0.002
į	5/22/2017	<0.002	<0.002	<0.002	<0.002
(6/19/2017	<0.002	<0.002	<0.002	<0.002
-	7/17/2017	<0.002	<0.002	<0.002	<0.002
8	8/14/2017	<0.002	<0.002	<0.002	<0.002
9	9/13/2017	<0.002	<0.002	<0.002	<0.002
;	3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4	4/29/2019	<0.002	<0.002	<0.002	<0.002
4	4/27/2020	<0.0004	<0.0004 (^)	<0.0004 (^)	<0.0004 (^)
4	4/26/2021	<0.002	<0.002	<0.002	<0.002

Constituent: Cadmium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 52 ND/Trace = 50 Wells = 4 Minimum Value = 0.000071 Maximum Value = 0.0025 Mean Value = 0.001049 Median Value = 0.001 Standard Deviation = 0.0004825 Coefficient of Variation = 0.46 Skewness = 1.61

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
MW-D1	13	13	0.0002	0.0025	0.001054	0.001	0.0004875	0.4626	1.796
MW-D2	13	12	0.000075	0.0025	0.001044	0.001	0.0005066	0.4852	1.45
MW-D3	13	12	0.000071	0.0025	0.001044	0.001	0.0005073	0.4859	1.439
MW-U1 (bg)	13	13	0.0002	0.0025	0.001054	0.001	0.0004875	0.4626	1.796

Constituent: Cadmium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.001	<0.001	<0.001	<0.001
3/27/2017	<0.001	<0.001	<0.001	<0.001
4/24/2017	<0.001	<0.001	<0.001	<0.001
5/22/2017	<0.001	<0.001	<0.001	<0.001
6/19/2017	<0.001	<0.001	<0.001	<0.001
7/17/2017	<0.001	<0.001	<0.001	<0.001
8/14/2017	<0.001	<0.001	<0.001	<0.001
9/13/2017	<0.001	<0.001	<0.001	<0.001
3/22/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.001	<0.001	<0.001	<0.001
4/27/2020	<0.0002	7.5E-05 (J^)	7.1E-05 (J)	<0.0002
11/19/2020	<0.001	<0.001	<0.001	<0.001
4/26/2021	<0.001	<0.001	<0.001	<0.001

Constituent: Chromium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 56 ND/Trace = 39 Wells = 4 Minimum Value = 0.0005 Maximum Value = 0.0051 Mean Value = 0.002221 Median Value = 0.0025 Standard Deviation = 0.0007899 Coefficient of Variation = 0.3556 Skewness = 0.2214

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	14	13	0.0005	0.0034	0.002421	0.0025	0.0006028	0.2489	-2.242
MW-D2	14	13	0.0005	0.0038	0.00245	0.0025	0.0006595	0.2692	-1.378
MW-D3	14	13	0.0005	0.0029	0.002386	0.0025	0.0005531	0.2318	-3.091
MW-U1 (bg)	14	0	0.0011	0.0051	0.001629	0.0014	0.001014	0.6227	3.16

Constituent: Chromium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.0034	0.0038	0.0029	0.0051
3/27/2017	<0.0025	<0.0025	<0.0025	0.0017 (J)
4/24/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
5/22/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
6/19/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
7/17/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
8/14/2017	<0.0025	<0.0025	<0.0025	0.0012 (J)
9/13/2017	<0.0025	<0.0025	<0.0025	0.0014 (J)
3/22/2018	<0.0025	<0.0025	<0.0025	0.0016 (J)
11/29/2018	<0.0025	<0.0025	<0.0025	0.0012 (J)
4/29/2019	<0.0025	<0.0025	<0.0025	0.0011 (J)
4/27/2020	<0.0005 (^)	<0.0005 (^)	<0.0005 (^)	0.0013
11/19/2020	<0.0025 (^)	<0.0025 (^)	<0.0025 (^)	0.0015 (J)
4/26/2021	<0.0025	<0.0025	<0.0025	0.0011 (J)

Constituent: Cobalt Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 47 Wells = 4 Minimum Value = 0.00035 Maximum Value = 0.0025 Mean Value = 0.002036 Median Value = 0.0025 Standard Deviation = 0.0007303 Coefficient of Variation = 0.3588 Skewness = -1.112

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	16	0.0005	0.0025	0.002375	0.0025	0.0005	0.2105	-3.615
MW-D2	16	14	0.00047	0.0025	0.002279	0.0025	0.0006106	0.2679	-2.38
MW-D3	16	1	0.00035	0.0025	0.001238	0.00125	0.000487	0.3934	0.6297
MW-U1 (bg)	16	16	0.0005	0.0025	0.00225	0.0025	0.0006831	0.3036	-2.268

Constituent: Cobalt (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

MW-D2 0.00047 (J)	MW-D3	MW-U1 (bg)
0.00047 (J)	0.0011 (1)	
	0.0011(3)	<0.0025
<0.0025	0.00079 (J)	<0.0025
<0.0025	0.001 (J)	<0.0025
<0.0025	0.0012 (J)	<0.0025
<0.0025	0.0015 (J)	<0.0025
<0.0025	0.0014 (J)	<0.0025
<0.0025	0.0013 (J)	<0.0025
<0.0025	0.0014 (J)	<0.0025
<0.0025	0.0015 (J)	<0.0005
<0.0025	0.0017 (J)	<0.0025
<0.0025	0.00098 (J)	<0.0025
<0.0025	0.0013 (J)	<0.0025
<0.0025	0.0012 (J)	<0.0025
0.001	0.00035 (J)	<0.0005 (^)
<0.0025	0.00059 (J)	<0.0025
<0.0025	<0.0025	<0.0025
	<0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025	 <0.0025 <0.0079 (J) <0.0025 <0.0011 (J) <0.0025 <0.0015 (J) <0.0025 <0.0015 (J) <0.0025 <0.0013 (J) <0.0025 <0.0014 (J) <0.0025 <0.0014 (J) <0.0025 <0.0015 (J) <0.0025 <0.0017 (J) <0.0025 <0.0013 (J) <0.0025 <0.0017 (J) <0.0025 <0.0013 (J) <0.0025 <0.0012 (J) <0.001 <0.00035 (J) <0.00059 (J)

Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 14 Wells = 4 Minimum Value = 0 Maximum Value = 5 Mean Value = 0.7143 Median Value = 0.4455 Standard Deviation = 1.151 Coefficient of Variation = 1.611 Skewness = 3.261

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	3	0.0994	5	0.6817	0.411	1.176	1.725	3.366
MW-D2	16	4	0.0139	5	0.7796	0.4685	1.163	1.492	3.244
MW-D3	16	4	0.0501	5	1.13	0.5605	1.54	1.362	2.106
MW-U1 (bg)	16	3	0	0.615	0.2657	0.19	0.2195	0.8263	0.5104

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.421	0.506	0.522	0.117
3/27/2017	0.655	1.28	0.557	0
4/24/2017	0.212	0.756	0.572	0.19
5/22/2017	0.186	0.333	0.457	0.133
6/19/2017	0.156	0.388	0.78	0.135
7/17/2017	0.153	0.534	0.409	0.19
8/14/2017	0.287	0.452	0.339	0.302
9/13/2017	0.816	0.453	1.28	0.614
3/22/2018	0.643	0.716	1.17	0.131
6/5/2018	0.149	0.0139	0.564	0
11/29/2018	0.0994	0.18	0.0501	0.0234
4/29/2019	<0.457	<0.42	0.594	<0.386
10/23/2019	<0.439	<0.484	<0.465	<0.508
4/27/2020	0.401	<0.184	<0.326	<0.298
11/19/2020	0.833	<5	<5	0.615
4/26/2021	<5	0.773	<5	0.609

Constituent: Fluoride Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 1 Wells = 4 Minimum Value = 0.04 Maximum Value = 0.19 Mean Value = 0.07788 Median Value = 0.07 Standard Deviation = 0.02999 Coefficient of Variation = 0.3852 Skewness = 1.06

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	0	0.04	0.12	0.07406	0.07	0.02275	0.3071	0.3889
MW-D2	16	0	0.04	0.12	0.06131	0.06	0.01746	0.2848	2.431
MW-D3	16	0	0.06	0.19	0.1144	0.11	0.02555	0.2234	1.102
MW-U1 (bg)	16	1	0.04	0.1	0.06175	0.06	0.01723	0.2791	1.177

Constituent: Fluoride (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	0.06 (J)	0.06 (J)	0.13	0.06 (J)
3/27/2017	0.05 (J)	0.05 (J)	0.11	0.04 (J)
4/24/2017	0.07 (J)	0.07 (J)	0.12	0.06 (J)
5/22/2017	0.07 (J)	0.06 (J)	0.11	0.06 (J)
6/19/2017	0.08 (J)	0.06 (J)	0.12	0.06 (J)
7/17/2017	0.11	0.06 (J)	0.06 (J)	0.06 (J)
8/14/2017	0.07 (J)	0.06 (J)	0.12	0.05 (J)
9/13/2017	0.075 (J)	0.061 (J)	0.12	0.058 (J)
3/22/2018	0.08 (J)	0.06 (J)	0.11	0.07 (J)
6/5/2018	0.07 (J)	0.07 (J)	0.12	0.06 (J)
11/29/2018	0.04 (J)	0.04 (J)	0.1	0.04 (J)
4/29/2019	0.06 (J)	0.06 (J)	0.11	<0.1
10/23/2019	0.12 (B)	0.05 (JB)	0.1 (B)	0.05 (JB)
4/27/2020	0.04 (J)	0.05 (J)	0.1	0.05 (J)
11/19/2020	0.1	0.05 (J)	0.11	0.07 (J)
4/26/2021	0.09 (JB)	0.12 (B)	0.19 (B)	0.1 (B)

Constituent: Lead Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 48 ND/Trace = 44 Wells = 4 Minimum Value = 0.00025 Maximum Value = 0.0013 Mean Value = 0.001153 Median Value = 0.0013 Standard Deviation = 0.0003434 Coefficient of Variation = 0.298 Skewness = -1.985

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	12	11	0.00025	0.0013	0.001171	0.0013	0.0003237	0.2764	-2.269
MW-D2	12	10	0.00025	0.0013	0.001068	0.0013	0.0004225	0.3955	-1.209
MW-D3	12	12	0.00025	0.0013	0.001213	0.0013	0.0003031	0.25	-3.015
MW-U1 (bg)	12	11	0.00025	0.0013	0.001158	0.0013	0.0003417	0.295	-2.029

Constituent: Lead (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013 (^)	0.0005 (J)	<0.0013 (^)	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	<0.0013	<0.0013	<0.0013
5/22/2017	<0.0013	<0.0013	<0.0013	0.00065 (J)
6/19/2017	<0.0013	<0.0013	<0.0013	<0.0013
7/17/2017	<0.0013	<0.0013	<0.0013	<0.0013
8/14/2017	0.0008 (J)	0.00037 (J)	<0.0013	<0.0013
9/13/2017	<0.0013	<0.0013	<0.0013	<0.0013
3/22/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	<0.0013	<0.0013
4/27/2020	<0.00025 (^)	<0.00025 (^)	<0.00025 (^)	<0.00025 (^)
4/26/2021	<0.0013	<0.0013	<0.0013	<0.0013

Constituent: Lithium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 56 ND/Trace = 49 Wells = 4 Minimum Value = 0.00034 Maximum Value = 0.005 Mean Value = 0.002411 Median Value = 0.0025 Standard Deviation = 0.0008828 Coefficient of Variation = 0.3661 Skewness = 0.3137

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	14	13	0.0005	0.005	0.002521	0.0025	0.0008894	0.3527	0.7892
MW-D2	14	12	0.0005	0.005	0.002479	0.0025	0.0009831	0.3966	0.4961
MW-D3	14	11	0.00048	0.005	0.002441	0.0025	0.00095	0.3891	0.7186
MW-U1 (bg)	14	13	0.00034	0.0025	0.002203	0.0025	0.000756	0.3432	-2.049

Constituent: Lithium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/27/2017	<0.0025	<0.0025	<0.0025	<0.0025
4/24/2017	<0.0025	<0.0025	<0.0025	<0.0025
5/22/2017	<0.0025	<0.0025	<0.0025	<0.0025
6/19/2017	<0.0025	<0.0025	<0.0025	<0.0025
7/17/2017	<0.0025	<0.0025	<0.0025	<0.0025
8/14/2017	<0.0025	<0.0025	<0.0025	<0.0025
9/13/2017	<0.0025	<0.0025	<0.0025	<0.0025
3/22/2018	<0.005	<0.005	<0.005	0.00034 (J)
11/29/2018	<0.0025	<0.0025	<0.0025	<0.0025
4/29/2019	<0.0025	0.0011 (J)	0.0013 (J)	<0.0025
4/27/2020	<0.0005 (^)	<0.0005	0.00048 (J)	<0.0005 (^)
11/19/2020	0.0023 (J)	0.0031	0.0024 (J)	<0.0025
4/26/2021	<0.0025	<0.0025	<0.0025	<0.0025

Constituent: Mercury Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 48 ND/Trace = 43 Wells = 4 Minimum Value = 0.000077 Maximum Value = 0.0002 Mean Value = 0.0001912 Median Value = 0.0002 Standard Deviation = 0.0000285 Coefficient of Variation = 0.1491 Skewness = -3.075

<u>Well</u>	<u>#Obs.</u>	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	12	11	0.000077	0.0002	0.0001897	0.0002	0.00003551	0.1871	-3.015
MW-D2	12	10	0.00011	0.0002	0.0001908	0.0002	0.0000261	0.1368	-2.787
MW-D3	12	11	0.00011	0.0002	0.0001925	0.0002	0.00002598	0.135	-3.015
MW-U1 (bg)	12	11	0.000099	0.0002	0.0001916	0.0002	0.00002916	0.1522	-3.015

Constituent: Mercury (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	7.7E-05 (JB)	0.00018 (JB)	0.00011 (JB)	9.9E-05 (JB)
3/27/2017	<0.0002	0.00011 (J)	<0.0002	<0.0002
4/24/2017	<0.0002	<0.0002	<0.0002	<0.0002
5/22/2017	<0.0002	<0.0002	<0.0002	<0.0002
6/19/2017	<0.0002	<0.0002	<0.0002	<0.0002
7/17/2017	<0.0002	<0.0002	<0.0002	<0.0002
8/14/2017	<0.0002	<0.0002	<0.0002	<0.0002
9/13/2017	<0.0002	<0.0002	<0.0002	<0.0002
3/22/2018	<0.0002	<0.0002	<0.0002	<0.0002
4/29/2019	<0.0002	<0.0002	<0.0002	<0.0002
4/27/2020	<0.0002	<0.0002	<0.0002	<0.0002
4/26/2021	<0.0002	<0.0002	<0.0002	<0.0002

Constituent: Molybdenum Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 60 ND/Trace = 46 Wells = 4 Minimum Value = 0.0012 Maximum Value = 0.015 Mean Value = 0.007957 Median Value = 0.01 Standard Deviation = 0.003739 Coefficient of Variation = 0.4699 Skewness = -0.7246

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	15	15	0.002	0.015	0.0098	0.01	0.002513	0.2564	-1.556
MW-D2	15	12	0.0012	0.015	0.008153	0.01	0.004158	0.51	-0.6656
MW-D3	15	4	0.0017	0.01	0.004873	0.0027	0.003642	0.7474	0.6422
MW-U1 (bg)	15	15	0.002	0.01	0.009	0.01	0.002646	0.294	-2.18

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

<0.01

<0.01

<0.01

<0.01

Constituent: Molybdenum (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.01	0.0012 (J)	0.0088 (J)	<0.01
3/27/2017	<0.01	<0.01	0.0023 (J)	<0.01
4/24/2017	<0.01	<0.01	0.0018 (J)	<0.01
5/22/2017	<0.01	0.0025 (J)	0.0031 (J)	<0.01
6/19/2017	<0.01	0.0016 (J)	0.0043 (J)	<0.01
7/17/2017	<0.01	<0.01	0.0027 (J)	<0.01
8/14/2017	<0.01	<0.01	0.0017 (J)	<0.01
9/13/2017	<0.01	<0.01	0.0021 (J)	<0.01
3/22/2018	<0.015	<0.015	0.0022 (J)	<0.003
6/5/2018	<0.01	<0.01	0.0022 (J)	<0.01
11/29/2018	<0.01	<0.01	<0.01	<0.01
4/29/2019	<0.01	<0.01	<0.01	<0.01
4/27/2020	<0.002 (^)	<0.002 (^)	0.0019 (J)	<0.002 (^)

<0.01

<0.01

<0.01 (^)

<0.01

11/19/2020

4/26/2021

Constituent: Selenium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 56 ND/Trace = 41 Wells = 4 Minimum Value = 0.00021 Maximum Value = 0.00187 Median Value = 0.0013 Standard Deviation = 0.0004544 Coefficient of Variation = 0.4182 Skewness = 0.1038

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	14	13	0.00025	0.0013	0.001156	0.0013	0.0003671	0.3176	-2.049
MW-D2	14	11	0.00025	0.0013	0.001084	0.0013	0.0003904	0.3603	-1.377
MW-D3	14	10	0.00021	0.0028	0.001166	0.0013	0.0006352	0.5446	0.6934
MW-U1 (bg)	14	7	0.00039	0.0013	0.0009407	0.00103	0.0003845	0.4087	-0.1795

Constituent: Selenium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0013	<0.0013	0.0028	<0.0013
3/27/2017	<0.0013	<0.0013	<0.0013	<0.0013
4/24/2017	<0.0013	<0.0013	<0.0013	<0.0013
5/22/2017	<0.0013	0.001 (J)	0.00037 (J)	0.00076 (J)
6/19/2017	<0.0013	0.00059 (JB)	0.001 (JB)	0.00062 (JB)
7/17/2017	0.00033 (J)	0.00033 (J)	<0.0013	0.0007 (J)
8/14/2017	<0.0013	<0.0013	<0.0013	0.00058 (J)
9/13/2017	<0.0013	<0.0013	<0.0013	0.00041 (J)
3/22/2018	<0.0013	<0.0013	<0.00025	0.00039
11/29/2018	<0.0013	<0.0013	<0.0013	<0.0013
4/29/2019	<0.0013	<0.0013	<0.0013	<0.0013
4/27/2020	<0.00025	<0.00025	0.00021 (J)	0.00061
11/19/2020	<0.0013	<0.0013	<0.0013	<0.0013
4/26/2021	<0.0013	<0.0013	<0.0013	<0.0013

Constituent: Thallium Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

For observations made between 2/28/2017 and 4/26/2021, a summary of the selected data set:

Observations = 64 ND/Trace = 40 Wells = 4 Minimum Value = 0.000085 Maximum Value = 0.0005 Mean Value = 0.0003452 Median Value = 0.0005 Standard Deviation = 0.0001898 Coefficient of Variation = 0.5496 Skewness = -0.4126

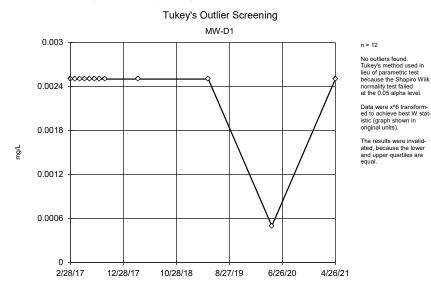
<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	<u>CV</u>	<u>Skewness</u>
MW-D1	16	16	0.0001	0.0005	0.000475	0.0005	0.0001	0.2105	-3.615
MW-D2	16	6	0.000085	0.0005	0.0002656	0.00013	0.0001914	0.7207	0.4152
MW-D3	16	2	0.000095	0.0005	0.0001653	0.00012	0.0001318	0.7971	2.195
MW-U1 (bg)	16	16	0.0001	0.0005	0.000475	0.0005	0.0001	0.2105	-3.615

Constituent: Thallium (mg/L) Analysis Run 6/22/2021 11:34 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

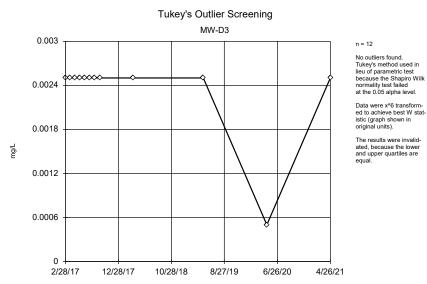
	MW-D1	MW-D2	MW-D3	MW-U1 (bg)
2/28/2017	<0.0005	0.00011 (J)	0.00013 (J)	<0.0005
3/27/2017	<0.0005	<0.0005	0.00011 (J)	<0.0005
4/24/2017	<0.0005	<0.0005	9.5E-05 (J)	<0.0005
5/22/2017	<0.0005	0.00011 (J)	0.00011 (J)	<0.0005
6/19/2017	<0.0005	0.00011 (J)	0.00012 (J)	<0.0005
7/17/2017	<0.0005	0.00011 (J)	0.00012 (J)	<0.0005
8/14/2017	<0.0005	0.00013 (J)	0.00011 (J)	<0.0005
9/13/2017	<0.0005	0.00012 (J)	0.00013 (J)	<0.0005
3/22/2018	<0.0005	<0.0005	0.0001 (J)	<0.0005
6/5/2018	<0.0005	8.5E-05 (J)	0.00012 (J)	<0.0005
11/29/2018	<0.0005	8.5E-05 (J)	0.0001 (J)	<0.0005
4/29/2019	<0.0005	<0.0005	0.00011 (J)	<0.0005
10/23/2019	<0.0005	0.00026 (J)	0.00017 (J)	<0.0005
4/27/2020	<0.0001 (^)	0.00013	0.00012	<0.0001 (^)
11/19/2020	<0.0005	<0.0005	<0.0005	<0.0005
4/26/2021	<0.0005	<0.0005	<0.0005	<0.0005

Outlier Analysis

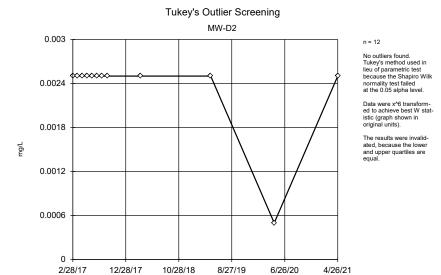

	CCPC Plant	CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10				gh 10	Printed 6/22/2021, 11:47 AM				
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	<u>Method</u>	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Arsenic (mg/L)	MW-D2	Yes	0.00027	4/27/2020	NP (nrm)	NaN	16	0.001133	0.0003298	unknown	ShapiroWilk
Barium (mg/L)	MW-U1 (bg)	Yes	0.0062	11/19/2020	NP	NaN	16	0.0025	0.001058	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-U1 (bg)	Yes	0.0051	2/28/2017	NP	NaN	14	0.001629	0.001014	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-D2	Yes	0.0139	6/5/2018	NP	NaN	16	0.7796	1.163	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-D2	Yes	0.12	4/26/2021	NP (nrm)	NaN	16	0.06131	0.01746	unknown	ShapiroWilk
Fluoride (mg/L)	MW-D3	Yes	0.06,0.19	7/17/2017	NP	NaN	16	0.1144	0.02555	x^(1/3)	ShapiroWilk
Lithium (mg/L)	MW-D3	Yes	0.005,0.0	3/22/2018	NP (nrm)	NaN	14	0.002441	0.00095	unknown	ShapiroWilk
Thallium (mg/L)	MW-D3	Yes	0.0005,0	11/19/202	NP	NaN	16	0.000	0.0001318	ln(x)	ShapiroWilk

Outlier Analysis

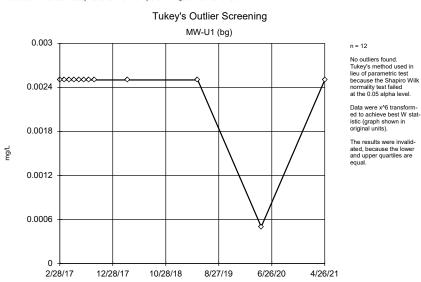
	CCPC Plant Crisp Ash Pond Site Cli			nt: Geosyntec	eosyntec Data: Sanitas_Statistics Sampling Events 1 through 10			Printed 6/22/2021, 11:47 AM			
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u> <u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test	
Antimony (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk	
Antimony (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk	
Antimony (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk	
Antimony (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.002333	0.0005774	unknown	ShapiroWilk	
Arsenic (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 16	0.001234	0.0002625	unknown	ShapiroWilk	
Arsenic (mg/L)	MW-D2	Yes	0.00027	4/27/2020	NP (nrm)	NaN 16	0.001133	0.0003298	unknown	ShapiroWilk	
Arsenic (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 16	0.000	0.0003545	x^(1/3)	ShapiroWilk	
Arsenic (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 16	0.001176	0.0003445	unknown	ShapiroWilk	
Barium (mg/L)	MW-D1	No	n/a	n/a	NP (nrm)	NaN 16	0.01402	0.005012	unknown	ShapiroWilk	
Barium (mg/L)	MW-D2	No	n/a	n/a	NP	NaN 16	0.1392	0.02422	normal	ShapiroWilk	
Barium (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 16	0.1591	0.05343	x^2	ShapiroWilk	
Barium (mg/L)	MW-U1 (bg)	Yes	0.0062	11/19/2020	NP	NaN 16	0.0025	0.001058	ln(x)	ShapiroWilk	
Beryllium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk	
Beryllium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk	
Beryllium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk	
Beryllium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001908	0.0004963	unknown	ShapiroWilk	
Cadmium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001054	0.0004875	unknown	ShapiroWilk	
Cadmium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001044	0.0005066	unknown	ShapiroWilk	
Cadmium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001044	0.0005073	unknown	ShapiroWilk	
Cadmium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 13	0.001054	0.0004875	unknown	ShapiroWilk	
Chromium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002421	0.0006028	unknown	ShapiroWilk	
Chromium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 14	0.00245	0.0006595	unknown	ShapiroWilk	
Chromium (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002386	0.0005531	unknown	ShapiroWilk	
Chromium (mg/L)	MW-U1 (bg)	Yes	0.0051	2/28/2017	NP	NaN 14	0.001629	0.001014	ln(x)	ShapiroWilk	
Cobalt (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 16	0.002375	0.0005	unknown	ShapiroWilk	
Cobalt (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 16	0.002279	0.0006106	unknown	ShapiroWilk	
Cobalt (mg/L)	MW-D3	No	n/a	n/a	NP	NaN 16	0.001238	0.000487	sqrt(x)	ShapiroWilk	
Cobalt (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 16	0.00225	0.0006831	unknown	ShapiroWilk	
Combined Radium 226 + 228 (pCi/L)	MW-D1	No	n/a	n/a	NP	NaN 16	0.6817	1.176	ln(x)	ShapiroWilk	
Combined Radium 226 + 228 (pCi/L)	MW-D2	Yes	0.0139	6/5/2018	NP	NaN 16	0.7796	1.163	ln(x)	ShapiroWilk	
Combined Radium 226 + 228 (pCi/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN 16	1.13	1.54	unknown	ShapiroWilk	
Combined Radium 226 + 228 (pCi/L)	MW-U1 (bg)	No	n/a	n/a	NP (nrm)	NaN 16	0.2657	0.2195	unknown	ShapiroWilk	
Fluoride (mg/L)	MW-D1	No	n/a	n/a	NP	NaN 16	0.07406	0.02275	sqrt(x)	ShapiroWilk	
Fluoride (mg/L)	MW-D2	Yes	0.12	4/26/2021	NP (nrm)	NaN 16	0.06131	0.01746	unknown	ShapiroWilk	
Fluoride (mg/L)	MW-D3	Yes	0.06,0.19	7/17/2017	NP	NaN 16	0.1144	0.02555	x^(1/3)	ShapiroWilk	
Fluoride (mg/L)	MW-U1 (bg)	No	n/a	n/a	NP	NaN 16	0.06175	0.01723	ln(x)	ShapiroWilk	
Lead (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001171	0.0003237	unknown	ShapiroWilk	
Lead (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 12	0.001068	0.0004225	unknown	ShapiroWilk	
Lead (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.001213	0.0003031	unknown	ShapiroWilk	
Lead (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12		0.0003417	unknown	ShapiroWilk	
Lithium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002521	0.0008894	unknown	ShapiroWilk	
Lithium (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002479	0.0009831	unknown	ShapiroWilk	
Lithium (mg/L)	MW-D3	Yes	0.005,0.0	3/22/2018	NP (nrm)	NaN 14	0.002441		unknown	ShapiroWilk	
Lithium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 14	0.002203		unknown	ShapiroWilk	
Mercury (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk	
Mercury (mg/L)	MW-D2	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000261	unknown	ShapiroWilk	
Mercury (mg/L)	MW-D3	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk	
Mercury (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 12	0.000	0.0000	unknown	ShapiroWilk	
Molybdenum (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 15	0.0098	0.002513	unknown	ShapiroWilk	
Molybdenum (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 15		0.004158	unknown	ShapiroWilk	
• · · · · · · · · · · · · · · · · · · ·					. ,					•	


Outlier Analysis

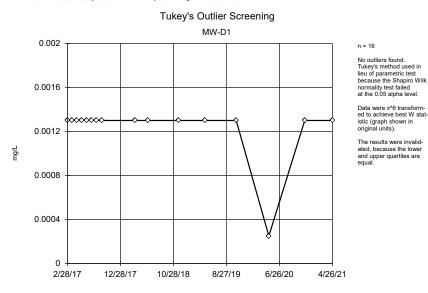
	CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10				Printed 6/22/2021, 11:47 AM						
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	<u>Method</u>	<u>Alpha</u> <u>N</u>	1	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Molybdenum (mg/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN 1	5	0.004873	0.003642	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 1	5	0.009	0.002646	unknown	ShapiroWilk
Selenium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 1	4	0.001156	0.0003671	unknown	ShapiroWilk
Selenium (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 1	4	0.001084	0.0003904	unknown	ShapiroWilk
Selenium (mg/L)	MW-D3	No	n/a	n/a	NP (nrm)	NaN 1	4	0.001166	0.0006352	unknown	ShapiroWilk
Selenium (mg/L)	MW-U1 (bg)	No	n/a	n/a	NP (nrm)	NaN 1	4	0.000	0.0003845	unknown	ShapiroWilk
Thallium (mg/L)	MW-D1	n/a	n/a	n/a	NP (nrm)	NaN 10	6	0.000475	0.0001	unknown	ShapiroWilk
Thallium (mg/L)	MW-D2	No	n/a	n/a	NP (nrm)	NaN 10	6	0.000	0.0001914	unknown	ShapiroWilk
Thallium (mg/L)	MW-D3	Yes	0.0005,0	11/19/202	NP	NaN 1	6	0.000	0.0001318	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-U1 (bg)	n/a	n/a	n/a	NP (nrm)	NaN 1	6	0.000475	0.0001	unknown	ShapiroWilk


Constituent: Antimony Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

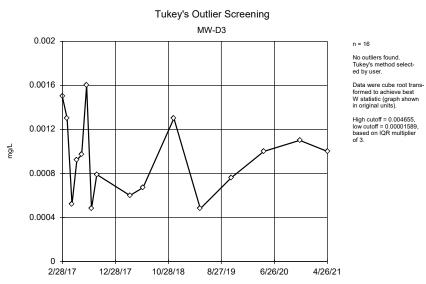
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Antimony Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

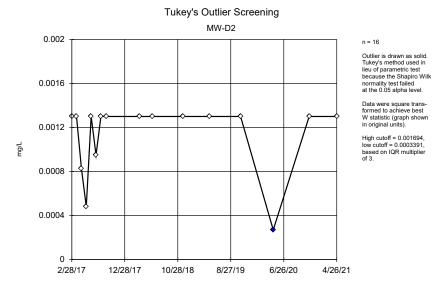
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Antimony Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

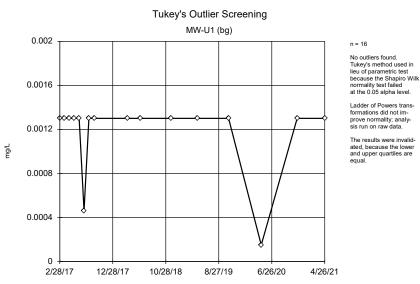
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Antimony Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

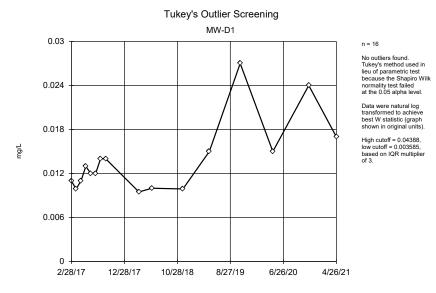
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Arsenic Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

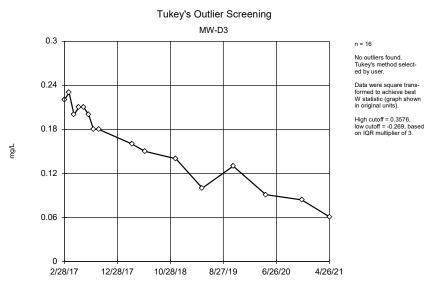

Constituent: Arsenic Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

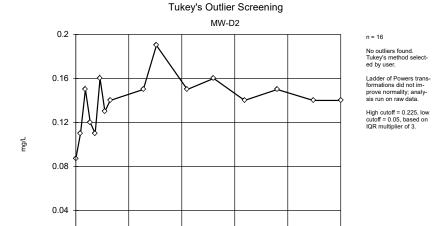

Constituent: Arsenic Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Arsenic Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Barium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Barium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

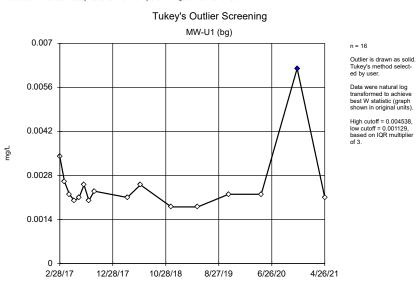
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Barium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

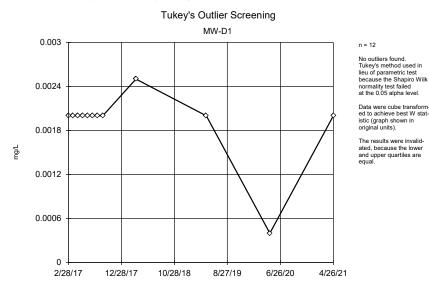
8/27/19

6/26/20

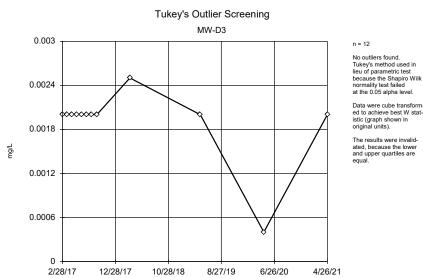

4/26/21

10/28/18

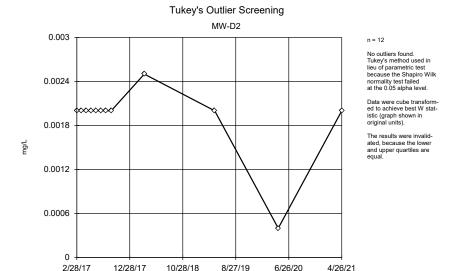
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


12/28/17

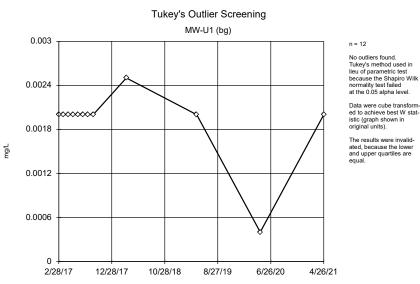
2/28/17


Constituent: Barium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

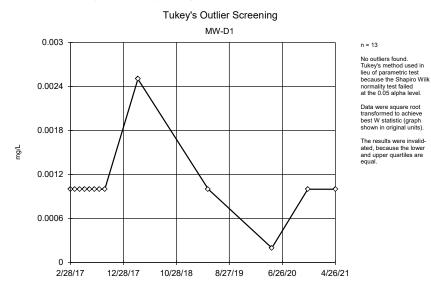
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Beryllium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

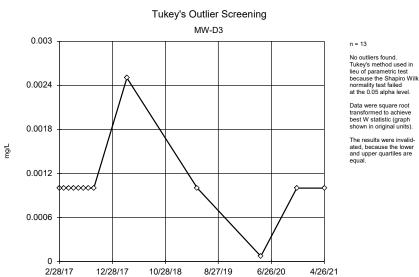

Constituent: Beryllium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Beryllium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

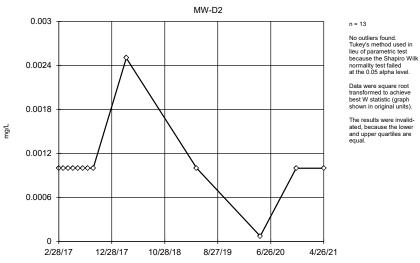
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Beryllium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

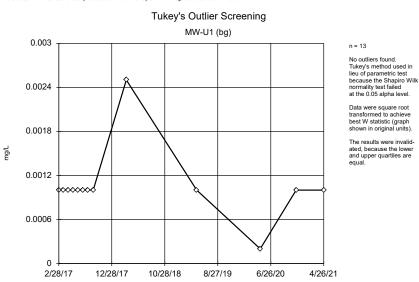

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

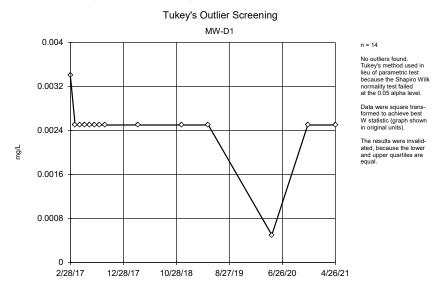
Constituent: Cadmium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



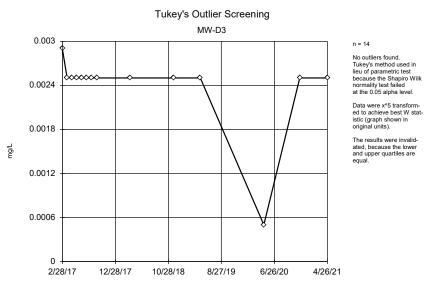
Constituent: Cadmium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

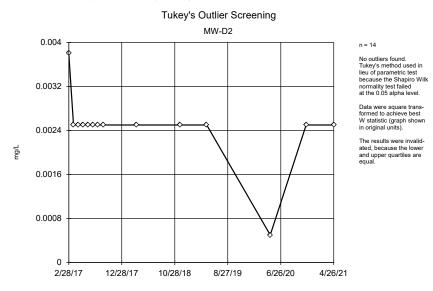

Constituent: Cadmium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

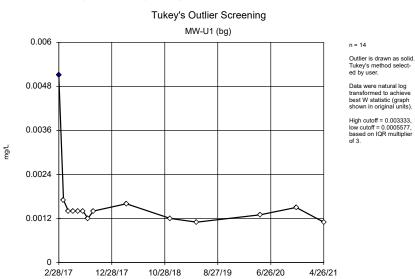
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Cadmium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16

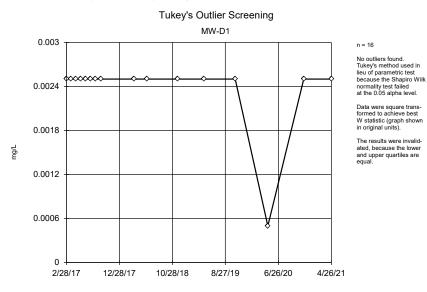

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Chromium Analysis Run 6/22/2021 11:43 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

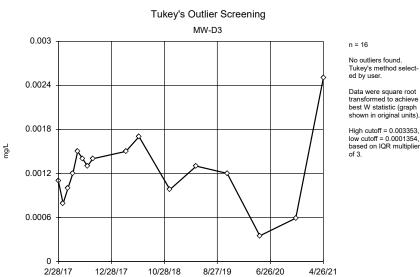

Constituent: Chromium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

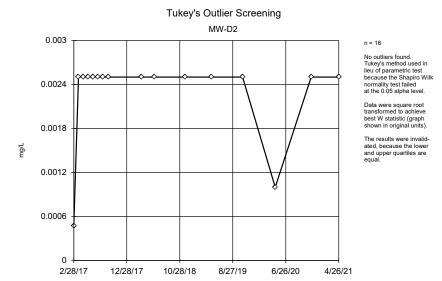

Constituent: Chromium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

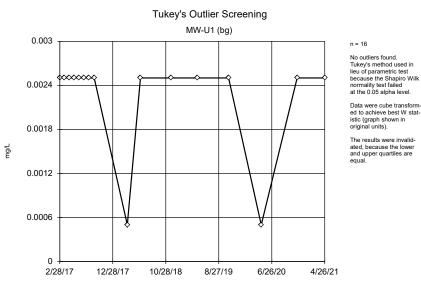
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Chromium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

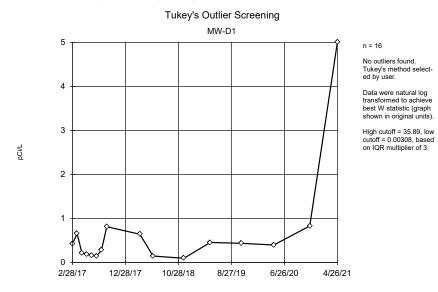

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Cobalt Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

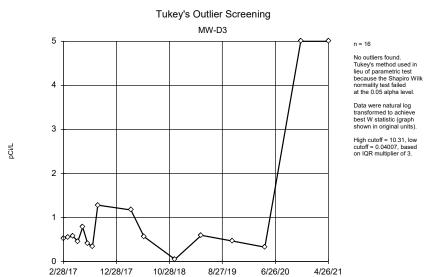

Constituent: Cobalt Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

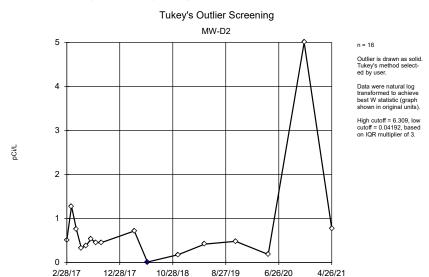

Constituent: Cobalt Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

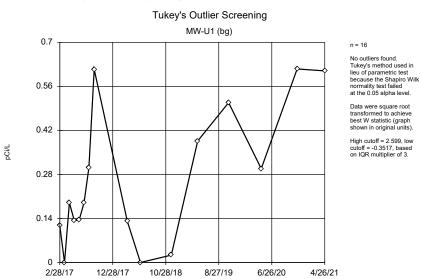
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Cobalt Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

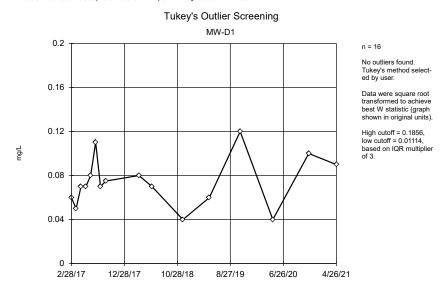

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 thr

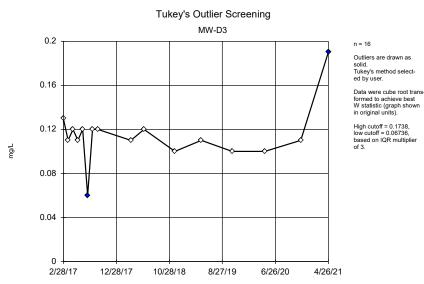

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 thr

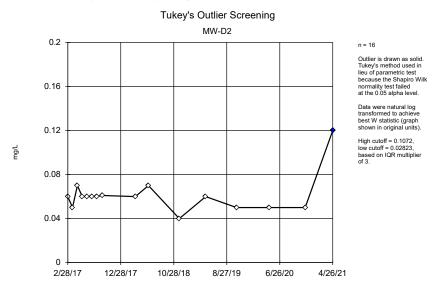
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

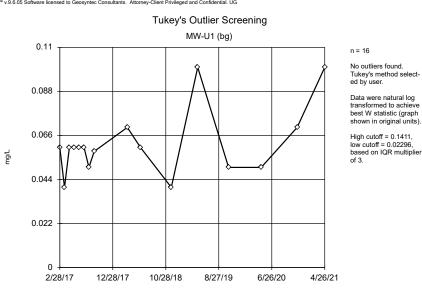

Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 thr

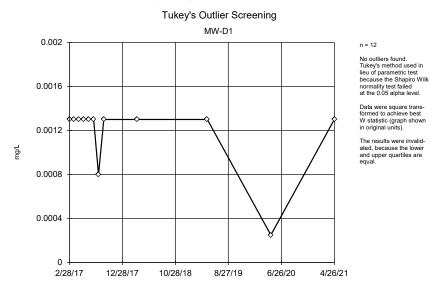
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



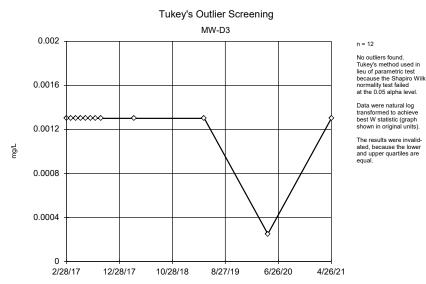
Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 thr


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

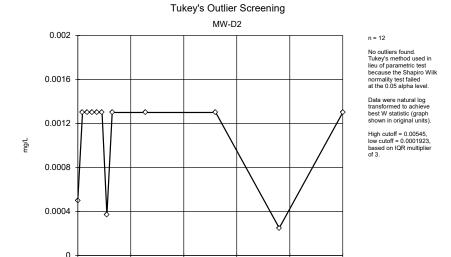

Constituent: Fluoride Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Fluoride Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Fluoride Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Fluoride Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Lead Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lead Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

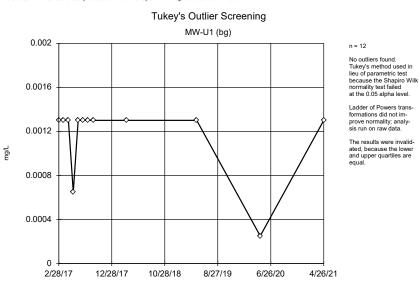
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lead Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

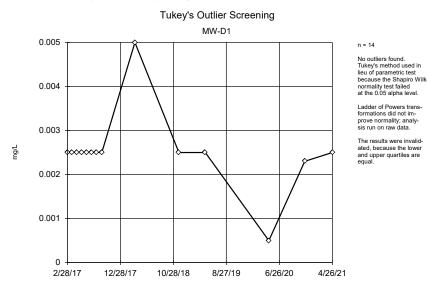
8/27/19

6/26/20

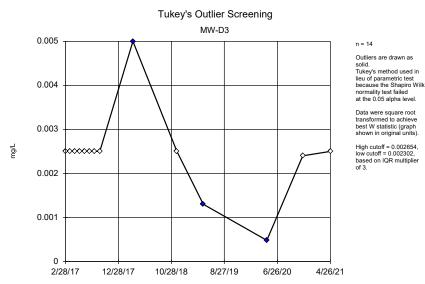

4/26/21

10/28/18

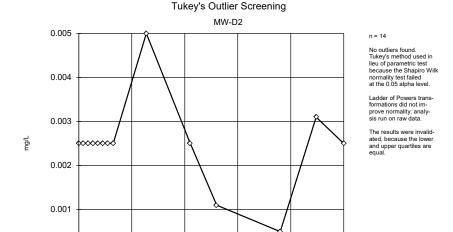
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


12/28/17

2/28/17


Constituent: Lead Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Lithium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lithium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Lithium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

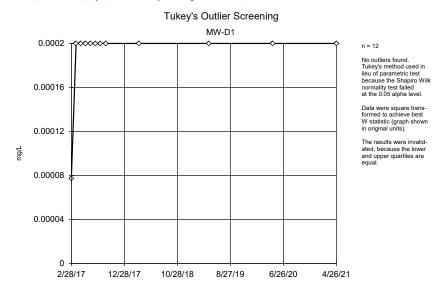
8/27/19

6/26/20

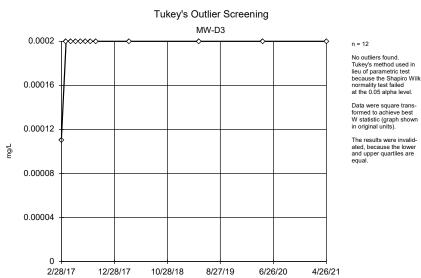
4/26/21

10/28/18

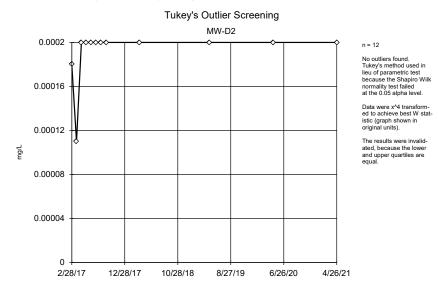
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


12/28/17

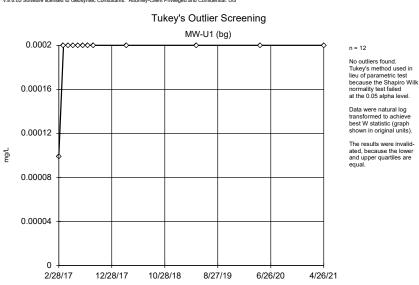
2/28/17


Constituent: Lithium Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

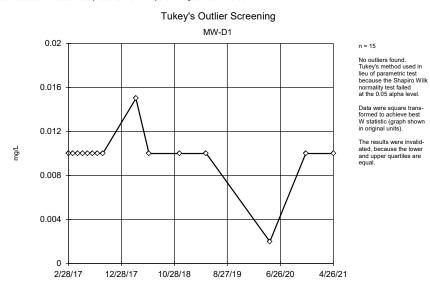
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Mercury Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

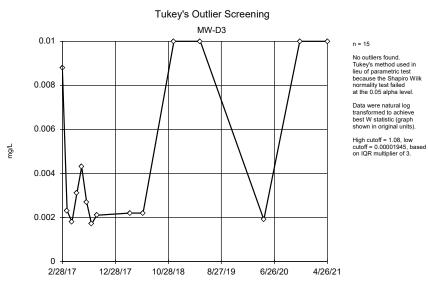
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Mercury Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

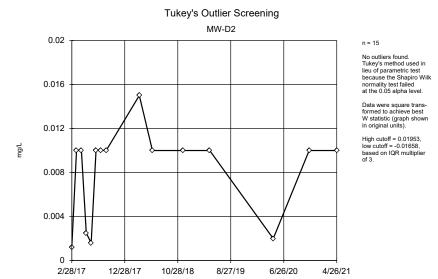
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Mercury Analysis Run 6/22/2021 11:44 AM View: Sampling Events 1 through 16

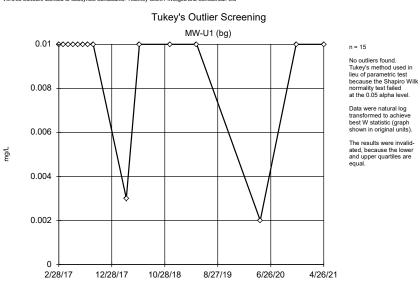
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Mercury Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

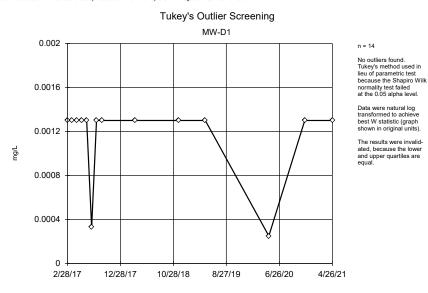
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Molybdenum Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

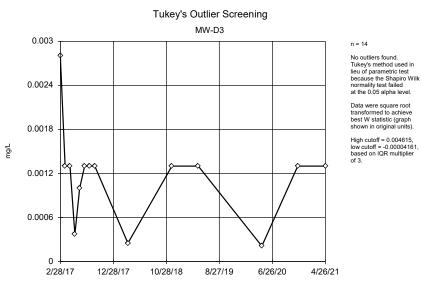

Constituent: Molybdenum Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

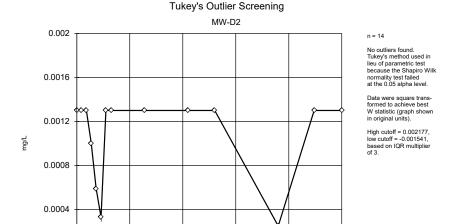

Constituent: Molybdenum Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Molybdenum Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Selenium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Selenium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

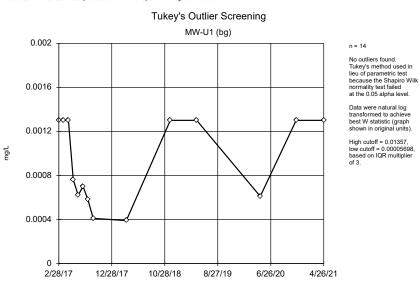
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Selenium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

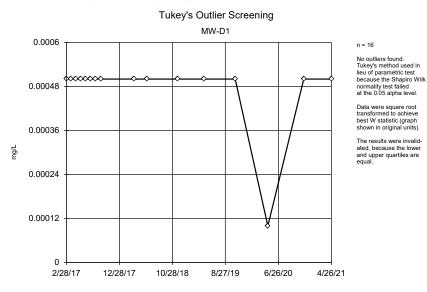
8/27/19

6/26/20

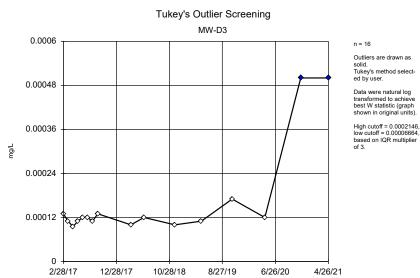

4/26/21

10/28/18

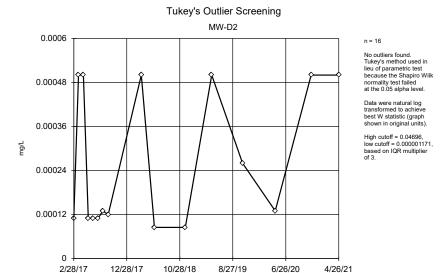
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


12/28/17

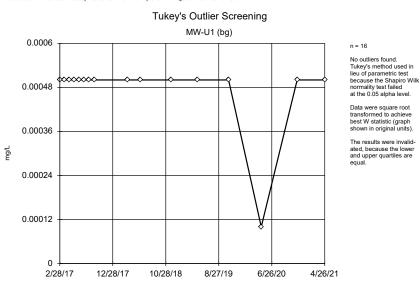
2/28/17


Constituent: Selenium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

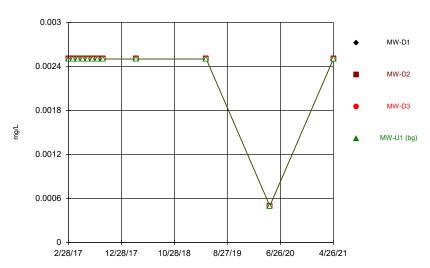

Constituent: Thallium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Constituent: Thallium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Thallium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16


CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Constituent: Thallium Analysis Run 6/22/2021 11:45 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Time Series

Constituent: Antimony Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

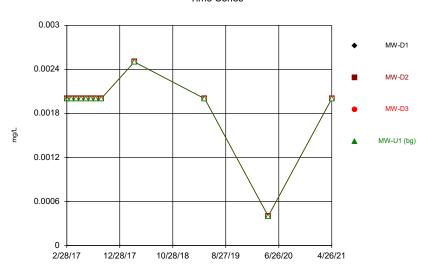
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. EPA

Time Series 0.3 MW-D1 0.24 MW-D2 MW-D3 0.18 mg/L MW-U1 (bg) 0.12 0.06 2/28/17 12/28/17 10/28/18 8/27/19 6/26/20 4/26/21

Constituent: Barium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

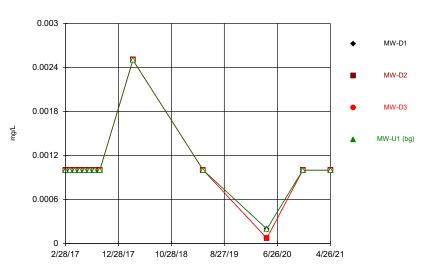
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Arsenic Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

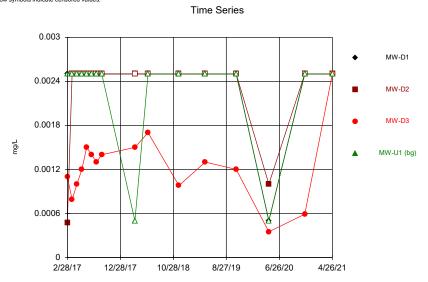
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas $^{\text{to}}$ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. EPA Hollow symbols indicate censored values.


Time Series

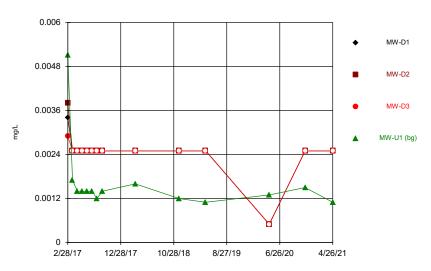
Constituent: Beryllium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10



Constituent: Cadmium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


${\tt Sanitas}^{\tt w}\,v.9.6.05\,{\tt Software}\,\,{\tt licensed}\,\,{\tt to}\,\,{\tt Geosyntec}\,\,{\tt Consultants}.\,\,\,{\tt Attorney-Client}\,\,{\tt Privileged}\,\,{\tt and}\,\,{\tt Confidential}.\,\,{\tt EPA}\,\,{\tt Hollow}\,\,{\tt symbols}\,\,{\tt indicate}\,\,{\tt censored}\,\,{\tt values}.$

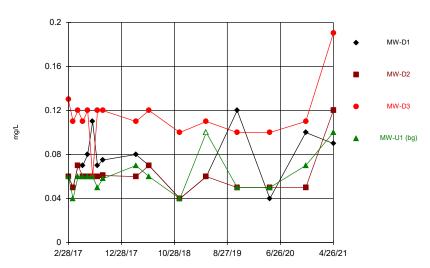
Constituent: Cobalt Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Time Series

Constituent: Chromium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


 $Sanitas \ ^{\text{\tiny W}} \ v.9.6.05 \ Software \ licensed \ to \ Geosyntec \ Consultants. \ Attorney-Client \ Privileged \ and \ Confidential. \ EPA \ Hollow \ symbols \ indicate \ censored \ values.$

Time Series MW-D1 MW-D2 MW-D3 MW-U1 (bg) 2/28/17 12/28/17 10/28/18 8/27/19 6/26/20 4/26/21

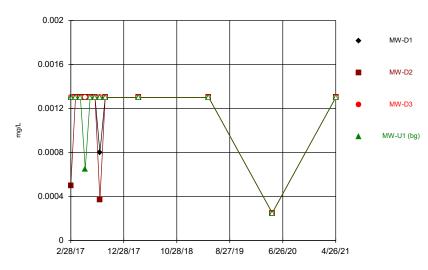
Constituent: Combined Radium 226 + 228 Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 thr

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Time Series

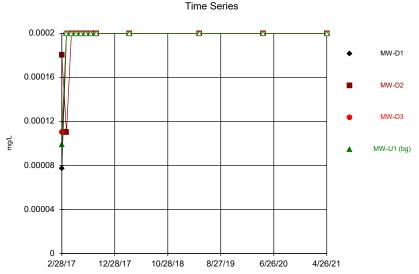
Constituent: Fluoride Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


${\tt Sanitas}^{\tt w}\,v.9.6.05\,{\tt Software}\,\,{\tt licensed}\,\,{\tt to}\,\,{\tt Geosyntec}\,\,{\tt Consultants}.\,\,\,{\tt Attorney-Client}\,\,{\tt Privileged}\,\,{\tt and}\,\,{\tt Confidential}.\,\,{\tt EPA}\,\,{\tt Hollow}\,\,{\tt symbols}\,\,{\tt indicate}\,\,{\tt censored}\,\,{\tt values}.$

Constituent: Lithium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

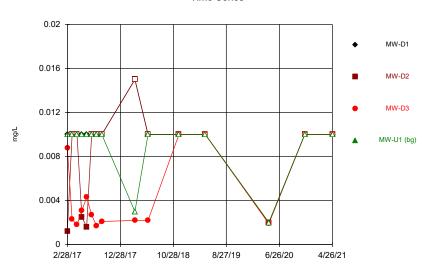
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Time Series

Constituent: Lead Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

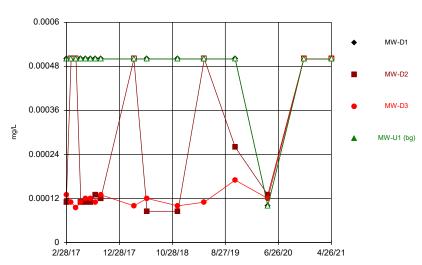
$Sanitas^{\text{tot}} \, v.9.6.05 \, Software \, \text{licensed to Geosyntec Consultants.} \, \, \text{Attorney-Client Privileged and Confidential. EPA } \, \, \text{Hollow symbols indicate censored values.}$



Constituent: Mercury Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

 $Sanitas^{\text{IM}} \, v. 9.6.05 \, Software \, licensed \, to \, Geosyntec \, Consultants. \, \, Attorney-Client \, Privileged \, and \, Confidential. \, EPA \, Hollow \, symbols \, indicate \, censored \, values.$

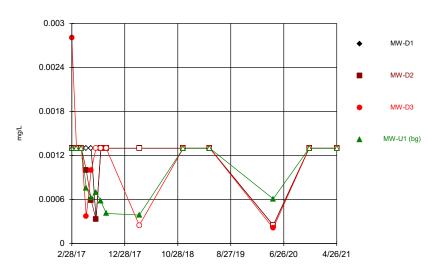


Constituent: Molybdenum Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

 $Sanitas \ ^{\text{\tiny W}} \ v.9.6.05 \ Software \ licensed \ to \ Geosyntec \ Consultants. \ Attorney-Client \ Privileged \ and \ Confidential. \ EPA \ Hollow \ symbols \ indicate \ censored \ values.$

Time Series

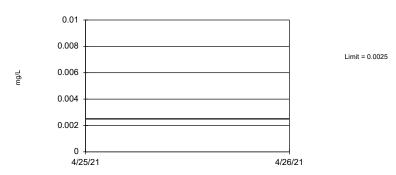


Constituent: Thallium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas** v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. EPA Hollow symbols indicate censored values.

Time Series

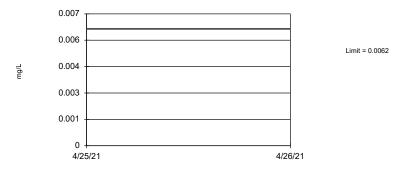

Constituent: Selenium Analysis Run 6/22/2021 11:37 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Tolerance Limit

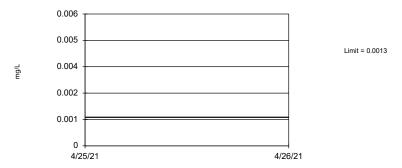
	CCPC Plant Crisp Ash	Pond Site	Client: Geosyntec	Data: Sanitas_Stat	istics Samp	ling Ever	nts 1 through	10 Printed 6/22/2021	, 11:52 AM	
Constituent	<u>Well</u>	Upper L	<u>im.</u> <u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.0025	n/a	n/a	n/a	12	100	n/a	0.5404	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0013	n/a	n/a	n/a	16	87.5	n/a	0.4401	NP Inter(NDs)
Barium (mg/L)	n/a	0.0062	n/a	n/a	n/a	16	0	n/a	0.4401	NP Inter(normal
Beryllium (mg/L)	n/a	0.002	n/a	n/a	n/a	12	100	n/a	0.5404	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.001	n/a	n/a	n/a	13	100	n/a	0.5133	NP Inter(NDs)
Chromium (mg/L)	n/a	0.0051	n/a	n/a	n/a	14	0	n/a	0.4877	NP Inter(normal
Cobalt (mg/L)	n/a	0.0025	n/a	n/a	n/a	16	100	n/a	0.4401	NP Inter(NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	1.148	n/a	n/a	n/a	16	18.75	No	0.01	Inter
Fluoride (mg/L)	n/a	0.1199	n/a	n/a	n/a	16	6.25	sqrt(x)	0.01	Inter
Lead (mg/L)	n/a	0.0013	n/a	n/a	n/a	12	91.67	n/a	0.5404	NP Inter(NDs)
Lithium (mg/L)	n/a	0.0025	n/a	n/a	n/a	14	92.86	n/a	0.4877	NP Inter(NDs)
Mercury (mg/L)	n/a	0.0002	n/a	n/a	n/a	12	91.67	n/a	0.5404	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.01	n/a	n/a	n/a	15	100	n/a	0.4633	NP Inter(NDs)
Selenium (mg/L)	n/a	0.0013	n/a	n/a	n/a	14	50	n/a	0.4877	NP Inter(normal
Thallium (mg/L)	n/a	0.0005	n/a	n/a	n/a	16	100	n/a	0.4401	NP Inter(NDs)

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 68.16% coverage at alpha=0.01; 77.93% coverage at alpha=0.5 94.34% coverage at alpha=0.5 Aeport alpha=0.5404.

Constituent: Antimony Analysis Run 6/22/2021 11:50 AM View: Sampling Events 1 through 16

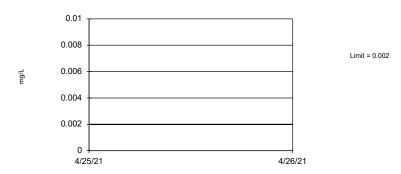
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

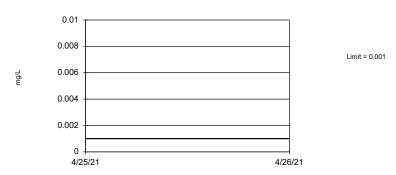
Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 16 background values. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05; 95.9% coverage at alpha=0.5. Report alpha = 0.4401.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 16 background values. 87.5% NDs. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05; 95.9% coverage at alpha=0.5. Report alpha = 0.4401.

Constituent: Arsenic Analysis Run 6/22/2021 11:50 AM View: Sampling Events 1 through 16

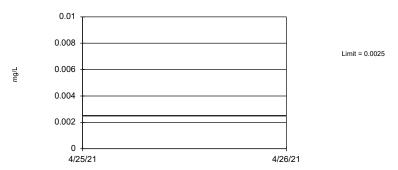
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

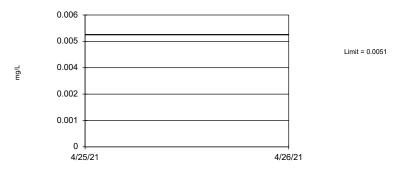
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 68.16% coverage at alpha=0.01; 77.93% coverage at alpha=0.05; 94.34% coverage at alpha=0.5. Report alpha = 0.5404.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 70.12% coverage at alpha=0.01; 79.49% coverage at alpha=0.5 94.73% coverage at alpha=0.5 15133.

Constituent: Cadmium Analysis Run 6/22/2021 11:50 AM View: Sampling Events 1 through 16

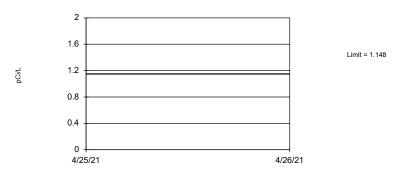
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

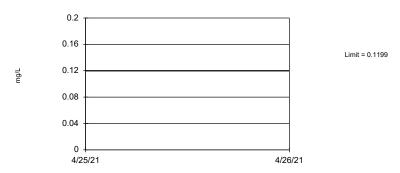
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05; 95.9% coverage at alpha=0.5. Report alpha=0.4401.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 14 background values. 72.07% coverage at alpha=0.01; 80.66% coverage at alpha=0.05. Report alpha = 0.4877.

Constituent: Chromium Analysis Run 6/22/2021 11:50 AM View: Sampling Events 1 through 16

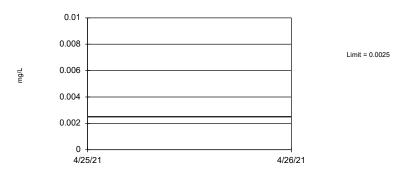
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Parametric

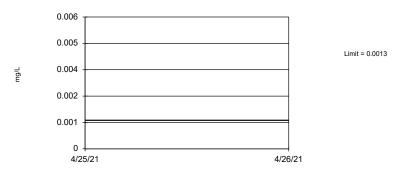
95% coverage. Background Data Summary (after Cohen's Adjustment): Mean=0.317, Std. Dev.=0.2745, n=16, 18.75% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.885, critical = 0.844. Report alpha = 0.01.

Tolerance Limit Interwell Parametric


95% coverage. Background Data Summary (based on square root transformation): Mean=0.2464, Std. Dev.=0.03299, n=16, 6.25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8644, critical = 0.844. Report alpha = 0.01

Constituent: Fluoride Analysis Run 6/22/2021 11:51 AM View: Sampling Events 1 through 16

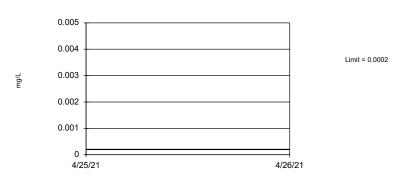
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

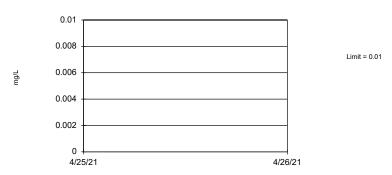
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 14 background values. 92.86% NDs. 72.07% coverage at alpha=0.01; 80.66% coverage at alpha=0.05; 95.12% coverage at alpha=0.5. Report alpha = 0.4877.

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 12 background values. 91.67% NDs. 68.16% coverage at alpha=0.01; 77.93% coverage at alpha=0.55; 94.34% coverage at alpha=0.5. Report alpha = 0.5404.

Constituent: Lead Analysis Run 6/22/2021 11:51 AM View: Sampling Events 1 through 16

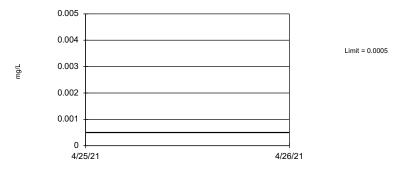
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. Limit is highest of 12 background values. 91.67% NDs. 68.16% coverage at alpha=0.01; 77.93% coverage at alpha=0.05; 94.34% coverage at alpha=0.5. Report alpha = 0.5404.

Tolerance Limit Interwell Non-parametric

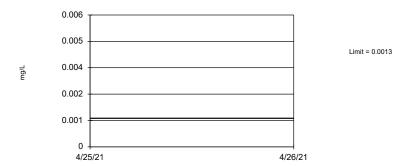

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 73.63% coverage at alpha=0.01; 81.84% coverage at alpha=0.5. Report alpha = 0.04633.

Constituent: Molybdenum Analysis Run 6/22/2021 11:51 AM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 75%. All background values were censored; limit is most recent reporting limit. 74.8% coverage at alpha=0.01; 83.01% coverage at alpha=0.05; 95.9% coverage at alpha=0.4401.

Constituent: Thallium Analysis Run 6/22/2021 11:51 AM View: Sampling Events 1 through 16

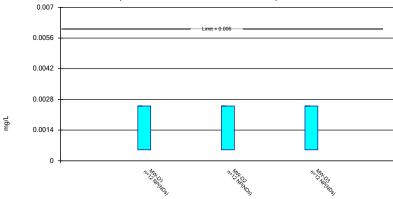
CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 14 background values. 50% NDs. 72.07% coverage at alpha=0.01; 80.66% coverage at alpha=0.05; 95.12% coverage at alpha=0.5. Report alpha = 0.4877.

Constituent: Selenium Analysis Run 6/22/2021 11:51 AM View: Sampling Events 1 through 16

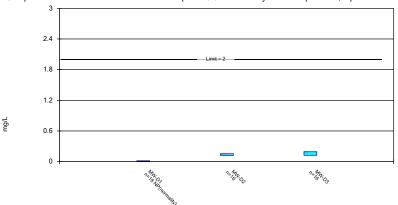

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Confidence Interval

	CCPC Plant Crisp Ash Pond Site		Client: Geosyntec	Data: Sanitas_S	Data: Sanitas_Statistics Sampling Events 1 through 10			rough 10	Printed 6/22/2021, 12:29 PM		
<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	Transform	m <u>Alpha</u>	Method	
Antimony (mg/L)	MW-D1	0.0025	0.0005	0.006	No	12	100	No	0.01	NP (NDs)	
Antimony (mg/L)	MW-D2	0.0025	0.0005	0.006	No	12	100	No	0.01	NP (NDs)	
Antimony (mg/L)	MW-D3	0.0025	0.0005	0.006	No	12	100	No	0.01	NP (NDs)	
Arsenic (mg/L)	MW-D1	0.0013	0.00025	0.01	No	16	100	No	0.01	NP (NDs)	
Arsenic (mg/L)	MW-D2	0.0013	0.00083	0.01	No	16	75	No	0.01	NP (normality)	
Arsenic (mg/L)	MW-D3	0.001168	0.0007062	0.01	No	16	12.5	No	0.01	Param.	
Barium (mg/L)	MW-D1	0.017	0.01	2	No	16	0	No	0.01	NP (normality)	
Barium (mg/L)	MW-D2	0.1549	0.1234	2	No	16	0	No	0.01	Param.	
Barium (mg/L)	MW-D3	0.1939	0.1244	2	No	16	0	No	0.01	Param.	
Beryllium (mg/L)	MW-D1	0.0025	0.0004	0.004	No	12	100	No	0.01	NP (NDs)	
Beryllium (mg/L)	MW-D2	0.0025	0.0004	0.004	No	12	100	No	0.01	NP (NDs)	
Beryllium (mg/L)	MW-D3	0.0025	0.0004	0.004	No	12	100	No	0.01	NP (NDs)	
Cadmium (mg/L)	MW-D1	0.0025	0.0002	0.005	No	13 13	100	No No	0.01	NP (NDs)	
Cadmium (mg/L)	MW-D2 MW-D3	0.0025 0.0025	0.000075 0.000071	0.005 0.005	No No	13	92.31 92.31	No No	0.01 0.01	NP (NDs) NP (NDs)	
Cadmium (mg/L) Chromium (mg/L)	MW-D1	0.0023	0.0005	0.003	No	14	92.86	No	0.01	NP (NDs)	
Chromium (mg/L)	MW-D2	0.0034	0.0005	0.1	No	14	92.86	No	0.01	NP (NDs)	
Chromium (mg/L)	MW-D3	0.0030	0.0005	0.1	No	14	92.86	No	0.01	NP (NDs)	
Cobalt (mg/L)	MW-D1	0.0025	0.0005	0.0025	No	16	100	No	0.01	NP (NDs)	
Cobalt (mg/L)	MW-D2	0.0025	0.001	0.0025	No	16	87.5	No	0.01	NP (NDs)	
Cobalt (mg/L)	MW-D3	0.001555	0.0009213	0.0025	No	16	6.25	No	0.01	Param.	
Combined Radium 226 + 228 (pCi/L)	MW-D1	0.816	0.153	5	No	16	18.75	No	0.01	NP (Cohens/xfrm)	
Combined Radium 226 + 228 (pCi/L)	MW-D2	0.773	0.184	5	No	16	25	No	0.01	NP (normality)	
Combined Radium 226 + 228 (pCi/L)	MW-D3	1.28	0.339	5	No	16	25	No	0.01	NP (normality)	
Fluoride (mg/L)	MW-D1	0.08886	0.05926	4	No	16	0	No	0.01	Param.	
Fluoride (mg/L)	MW-D2	0.061	0.05	4	No	16	0	No	0.01	NP (normality)	
Fluoride (mg/L)	MW-D3	0.13	0.1	4	No	16	0	No	0.01	NP (normality)	
Lead (mg/L)	MW-D1	0.0013	0.0008	0.0013	No	12	91.67	No	0.01	NP (NDs)	
Lead (mg/L)	MW-D2	0.0013	0.00037	0.0013	No	12	83.33	No	0.01	NP (NDs)	
Lead (mg/L)	MW-D3	0.0013	0.00025	0.0013	No	12	100	No	0.01	NP (NDs)	
Lithium (mg/L)	MW-D1	0.005	0.0023	0.0025	No	14	92.86	No	0.01	NP (NDs)	
Lithium (mg/L)	MW-D2	0.0031	0.0011	0.0025	No	14	85.71	No	0.01	NP (NDs)	
Lithium (mg/L)	MW-D3	0.005	0.0024	0.0025	No	14	78.57	No	0.01	NP (NDs)	
Mercury (mg/L)	MW-D1	0.0002	0.000077	0.002	No	12	91.67	No	0.01	NP (NDs)	
Mercury (mg/L)	MW-D2	0.0002	0.00018	0.002	No	12	83.33	No	0.01	NP (NDs)	
Mercury (mg/L)	MW-D3	0.0002	0.00011	0.002	No	12	91.67	No	0.01	NP (NDs)	
Molybdenum (mg/L)	MW-D1	0.015	0.002	0.01	No	15	100	No	0.01	NP (NDs)	
Molybdenum (mg/L)	MW-D2	0.015	0.002	0.01	No	15	80	No	0.01	NP (NDs)	
Molybdenum (mg/L)	MW-D3	0.01	0.0019	0.01	No	15	26.67	No	0.01	NP (normality)	
Selenium (mg/L)	MW-D1	0.0013	0.00033	0.05	No	14	92.86	No	0.01	NP (NDs)	
Selenium (mg/L)	MW-D2	0.0013	0.00059	0.05	No	14	78.57	No	0.01	NP (NDs)	
Selenium (mg/L)	MW-D3	0.0028	0.00037	0.05	No	14	71.43	No	0.01	NP (normality)	
Thallium (mg/L)	MW-D1	0.0005	0.0001	0.002	No	16	100	No	0.01	NP (NDs)	
Thallium (mg/L)	MW-D2	0.0005	0.00011	0.002	No	16	37.5	No No	0.01	NP (normality)	
Thallium (mg/L)	MW-D3	0.00017	0.0001	0.002	No	16	12.5	No	0.01	NP (normality)	

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

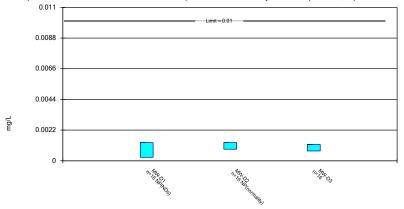

Constituent: Antimony Analysis Run 6/22/2021 12:27 PM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

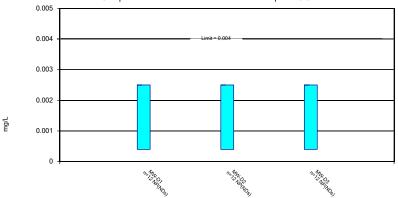


Constituent: Barium Analysis Run 6/22/2021 12:27 PM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

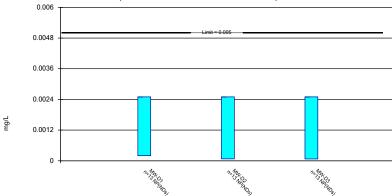
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 6/22/2021 12:27 PM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

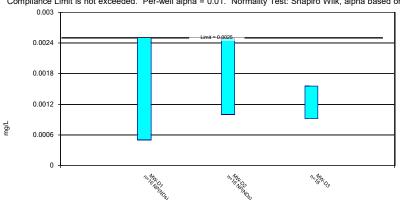
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

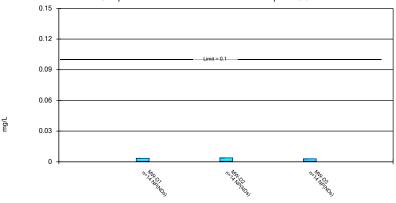
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Cadmium Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

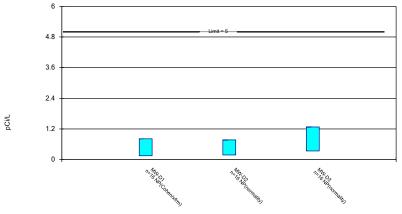
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

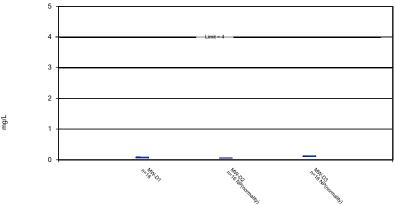
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Chromium Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16

CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

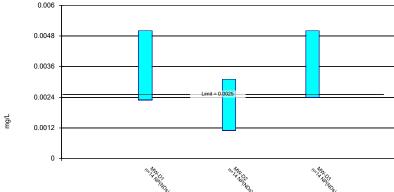
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


Non-Parametric Confidence Interval

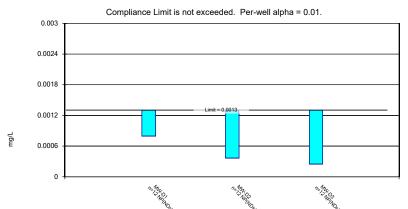
Compliance Limit is not exceeded. Per-well alpha = 0.01.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

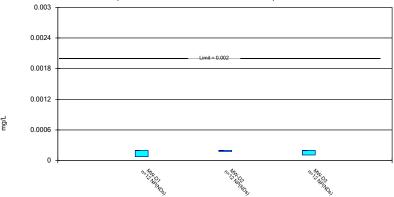


Constituent: Fluoride Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10


Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

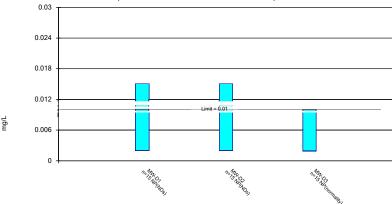
Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval



Constituent: Lead Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

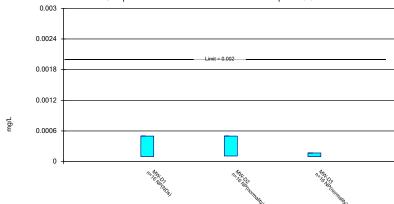
Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

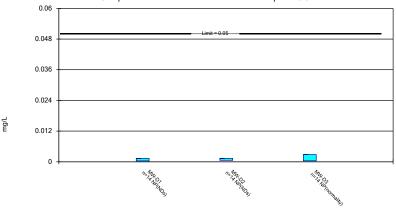


Constituent: Molybdenum Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Thallium Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10

Sanitas™ v.9.6.05 Software licensed to Geosyntec Consultants. Attorney-Client Privileged and Confidential. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Selenium Analysis Run 6/22/2021 12:28 PM View: Sampling Events 1 through 16 CCPC Plant Crisp Ash Pond Site Client: Geosyntec Data: Sanitas_Statistics Sampling Events 1 through 10